• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于改进经验模态分解和支持向量机的风电功率预测研究
Wind%20Power%20Prediction%20Based%20on%20Improved%20Empirical%20Mode%20Decomposition%20and%20Support%20Vector%20Machine
Received:July 15, 2019  Revised:July 15, 2019
DOI:10.19753/j.issn1001-1390.2021.06.007
中文关键词: EMD  采样率问题  支持向量机  风电预测
英文关键词: EMD  %20Sampling%20Rate%20Problem  %20Support%20Vector%20Machine  %20Wind%20Power%20Prediction
基金项目:国家电网公司科技项目
Author NameAffiliationE-mail
Wang Tao Economic and Technical Research Institute of Liaoning Electric Power Co,Ltd State Grid,Shenyang wangt_jyy@ln.sgcc.com.cn 
Gao Jing Economic and Technical Research Institute of Liaoning Electric Power Co,Ltd State Grid,Shenyang gj_jyy@ln.sgcc.com.cn 
Wang Youyin Economic and Technical Research Institute of Liaoning Electric Power Co,Ltd State Grid,Shenyang ronytiti@126.com 
Shi Zhe Economic and Technical Research Institute of Liaoning Electric Power Co,Ltd State Grid,Shenyang 7899608@qq.com 
Liu Tao Economic and Technical Research Institute of Liaoning Electric Power Co,Ltd State Grid,Shenyang 413969856@qq.com 
Yang Bo Economic and Technical Research Institute of Liaoning Electric Power Co,Ltd State Grid,Shenyang 117009940@qq.com 
Yan Feng* North China Electric Power University(Bao Ding) yanfeng_ncepu@163.com 
Hits: 1537
Download times: 418
中文摘要:
      风电大规模接入给电网安全运行带来了较大的挑战,风电预测是主要的解决措施之一。针对风电功率信号的非线性和非平稳性特征,提出了一种基于改进经验模态分解(IEMD)和支持向量机(SVM)的风电信号组合预测方法。首先,阐述了EMD的基本原理和优缺点,针对其分解非线性非平稳信号时的采样率问题,提出了一种消减欠冲现象的改进方法。其次,以辽宁某风电场提供的风电数据为研究实例,利用IEMD将风电信号分解为一组较为平稳的子序列分量;然后,运用SVM理论分别构建风电信号低频和中频分量的EMD-SVM和IEMD-SVM组合预测模型,并在MATLAB中仿真对比了两种模型的预测结果。研究结果表明,IEMD-SVM的组合预测模型在分解风电信号时能够有效减少欠冲点数目,较好地表现原信号的整体趋势,与EMD-SVM预测方法相比具有更高的精度和准确度。
英文摘要:
      Large-scale%20wind%20power%20integration%20brings%20great%20challenges to the%20safe%20operation%20of%20power%20grid,%20and%20wind%20power%20forecasting%20is%20one%20of%20the%20main%20solutions.%20Considering%20the%20non-linearity%20and%20non-stationarity%20of%20wind%20power%20signals,%20a%20combined%20forecasting%20method%20of%20wind%20power%20signals%20based%20on%20improved%20empirical%20mode%20decomposition%20(IEMD)%20and%20support%20vector%20machine%20(SVM)%20is%20proposed.%20Firstly,%20the%20basic%20principle%20and%20advantages%20and%20disadvantages%20of%20EMD%20are%20described.%20Aiming%20at%20the%20problem%20of%20sampling%20rate%20when%20EMD%20decomposes%20non-linear%20and%20non-stationary%20signals,%20an%20improved%20method to reduce%20under%20impulse%20is%20proposed.%20Secondly,%20taking%20wind%20power%20data%20provided%20by%20a%20wind%20farm%20in%20Liaoning%20Province%20as%20an%20example,%20wind%20power%20signals%20are%20decomposed%20into%20a%20set%20of%20relatively%20stable%20subsequence%20components%20using%20IEMD.%20Then,%20EMD-SVM%20and%20IEMD-SVM%20combined%20forecasting%20models%20of%20low-frequency%20and%20intermediate-frequency%20components%20of%20wind%20power%20signals%20are%20constructed%20respectively%20by%20using%20SVM%20theory,%20and%20the%20forecasting%20results%20of%20the%20two%20models%20are%20simulated%20and%20compared%20in%20MATLAB.%20The%20results%20show%20that%20IEMD-SVM%20combined%20forecasting%20model%20can%20effectively%20reduce%20the%20number%20of%20undershoots%20when%20decomposing%20wind%20power%20signals,%20and%20better%20represent%20the%20overall%20trend%20of%20the%20original%20signal.%20Compared%20with%20EMD-SVM%20forecasting%20method,%20it%20has%20higher%20accuracy%20and%20accuracy.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd