• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于改进LS-SVM的短期电力负荷预测方法研究
Research on Short-term Power Load Forecasting Method Based on Improved LS-SVM
Received:July 19, 2019  Revised:August 01, 2019
DOI:10.19753/j.issn1001-1390.2021.05.026
中文关键词: 电力负荷  粒子群优化  短期负荷  最小二乘支持向量机  预测模型
英文关键词: Electric  load, Particle  swarm optimization, Short-term  Load, Least  Squares Support  Vector Machine, Prediction  Model
基金项目:
Author NameAffiliationE-mail
Liu Yan* Electric Power Reaserch Institute,State Grid Jibei Electric Power Co.,Ltd 472322716@qq.com 
Peng Xinxia Electric Power Reaserch Institute,State Grid Jibei Electric Power Co.,Ltd liuyan198907@qq.com 
Zheng Sida Electric Power Reaserch Institute,State Grid Jibei Electric Power Co.,Ltd liuyan198907@qq.com 
Hits: 1995
Download times: 509
中文摘要:
      针对电力负荷随机性强、稳定性差、预测精度不理想等问题,本文提出了一种基于粒子群优化PSO和最小二乘支持向量机LS-SVM的短期负荷预测方法。模型的输入因子是负荷数据和气象信息等。粒子群优化算法用于实现支持向量机参数的自动优化,建立了基于粒子群优化的最小二乘支持向量机短期负荷预测模型。并通过仿真验证了改进前后预测模型的准确性和有效性,结果表明,改进的预测方法具有收敛性好、预测精度高、训练速度快的优点。本研究为我国短期负荷预测方法的发展提供了参考和借鉴。
英文摘要:
      Aiming at the problems of strong randomness, poor stability and unsatisfactory forecasting accuracy of power load, a short-term power load forecasting method combining particle swarm optimization PSO and least squares support vector machine LS-SVM is proposed in this paper.The input factors of the model are load data and meteorological information, particle swarm optimization algorithm is adopted to realize the automatic selection of the parameter of the support vector machine,the least squares support vector machine short-term load forecasting model optimized by particle swarm optimization is established.The accuracy and validity of the improved prediction method are verified by simulation, the results show that the improved method brings benefits to convergence, thinking accuracy and training speed.This study provides a reference for the development of short-term load forecasting methods in China.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd