• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于卷积神经网络的非侵入式负荷监测方法
A Convolutional Neural Network Based Non-Intrusive Load Monitoring Method
Received:July 28, 2019  Revised:October 04, 2019
DOI:10.19753/j.issn1001-1390.2022.01.020
中文关键词: 非侵入式负荷监测 负荷分解 智能用电 深度学习 卷积神经网络 边缘计算
英文关键词: Non-Intrusive load monitoring, Load disaggregation, Smart power utilization, Deep learning, Convolutional neural network, Edge computing
基金项目:
Author NameAffiliationE-mail
Liu Yiming Shandong University of Technology lym.0072003@gmail.com 
Li Huimin* Shandong University of Technology huiminl@gridnt.com 
Wang Leting Shandong GridNT Information Technology Ltd letingw@gridnt.com 
Hasan Rafiq Shandong University hassan.rafiq182@gmail.com 
Hits: 1488
Download times: 626
中文摘要:
      从深度学习与边缘计算的角度,对适用于电力物联网的非侵入式负荷监测方法展开了研究。首先,针对NILM系统在物联网场景下的部署问题,提出了一种新的边缘计算架构,并讨论了各组成部分的任务分配。然后,针对负荷激活在线提取问题,提出了基于离散度和用电行为规律分析的激活判断策略;针对低频采样下的负荷特征问题,提出了一种可自动提取激活特征并识别类型的卷积神经网络架构,并通过分析负荷激活的背景功率、功率波动等特性,定义了三个一般性特征作为补充。最后,在民用数据集上进行了实验,证明了文中算法在泛化性能和计算效率方面的提升。
英文摘要:
      From the perspective of deep learning and edge computing, Electric Power IoT compatible NILM system is studied in the paper. Firstly, centered on the NILM system deployment solution in IoT scenarios, a novel edge computing framework is proposed, of which the component roles are discussed. Furthermore, aimed at online extraction of load activations, a dispersion evaluation and load behavior regularity analysis-based activation detection strategy is proposed; For low sample frequency input feature extraction, a CNN architecture that can automatically extract activation signatures and recognize the load type is proposed. Plus, by the analysis of activation background power, power value fluctuation, etc., three generic features are defined as a supplement to the CNN extracted features. Last, a verification experiment is carried out on a domestic dataset, of which the result proves the proposed algorithm's improvement on generalization and computing efficiency.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd