• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于集群负荷预测的主动配电网多目标优化调度
Multi-objective Optimal Dispatching of Active Distribution Network based on Cluster Load Prediction
Received:August 07, 2019  Revised:August 28, 2019
DOI:10.19753/j.issn1001-1390.2021.05.014
中文关键词: 模糊聚类  极限学习机  日前调度  实时调度  多目标
英文关键词: fuzzy clustering  Extreme learning machine  day-ahead scheduling  real-time scheduling  multi-objective
基金项目:中国南方电网科技项目资助(GDKJXM20180576)
Author NameAffiliationE-mail
LIU Xinmiao Electric Power Dispatching and Control Center of Guangdong Power Grid Co. Ltd liuxinmiao.csg@139.com 
LI Zhuohuan* School of Electrical Power, South China University of Technology lizhuohuan001@foxmail.com 
ZENG Kaiwen Electric Power Dispatching and Control Center of Guangdong Power Grid Co. Ltd 000000@139.com 
LIU Jianing Electric Power Dispatching and Control Center of Guangdong Power Grid Co. Ltd 000000@139.com 
LI Fusheng School of Electrical Power, South China University of Technology 000000@139.com 
YU Tao School of Electrical Power, South China University of Technology taoyu1@scut.edu.cn 
LAI Jieheng School of Electrical Power, South China University of Technology 000000@139.com 
Hits: 1290
Download times: 433
中文摘要:
      常规的配电网调度模式中,往往通过可控分布式电源、储能和柔性负荷来调节预测误差和实时波动,粗略地预测负荷值,这使得负荷预测往往不够精准,而且用可控分布式电源、柔性负荷或储能平衡配电网负荷波动,会造成较大的波动成本和备用成本。对此提出一种基于集群负荷预测的主动配电网多目标优化调度方法。采用模糊聚类的方法,对负荷进行集群划分,利用极限学习机对负荷进行集群预测。基于预测值,先以有功调度成本最低进行日前调度,再在日前调度的基础上进行修正,以可控分布式出力修正量最小,储能出力修正量最小,柔性负荷修正量最小为目标进行实时调度。
英文摘要:
      In the conventional distribution network dispatching mode, the forecasting error and real-time fluctuation are regulated by energy storage and flexible load, and the load values are predicted roughly, which makes the load forecasting often not accurate enough. Moreover, using controllable distributed power supply, flexible load and energy storage device to balance load fluctuation of distribution network and deal with distributed output will result in large flexible load dispatching and reserve cost. A multi-objective optimal dispatching method for active distribution network based on cluster load prediction is proposed. The fuzzy clustering method is used to cluster the load of the active distribution network, and the extreme learning machine is used to predict the load values. Based on the predicted value, the day-ahead dispatching is firstly carried out with the lowest active power dispatching cost. Real-time dispatching was carried out with the objective of minimum controllable distributed output correction, minimum energy storage output correction, and minimum flexible load correction and then modified on the basis of day-ahead dispatching.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd