• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于IPSO-WNN的综合能源系统短期负荷预测
A short term load prediction of integrated energy system based on IPSO-WNN
Received:August 12, 2019  Revised:August 31, 2019
DOI:10.19753/j.issn1001-1390.2020.09.016
中文关键词: 负荷预测  综合能源系统  小波神经网络  粒子群算法  混沌搜索
英文关键词: load prediction, integrated energy system, wavelet neural network, particle swarm optimization, chaos search
基金项目:国家重点研发计划项目(No.2017YFB0903300);国家自然科学基金项目(No.51807134)
Author NameAffiliationE-mail
Li Shoumao School of Electrical and Automation Engineering,Shandong University of Science and Technology lishoumao5@163.com 
Qi Jiaxing 32654 PLA Troops qijiaxing2001@163.com 
Bai Xingzhen Electrical and Automation Engineering, Shandong University of Science and Technology xzbai@163.com 
Ge Leijiao* Key Laboratory of Smart Grid of Ministry of Education, Tianjin University legendglj99@tju.edu.cn 
Li Tao 32654 PLA Troops 239255951@qq.com 
Hits: 2142
Download times: 552
中文摘要:
      针对传统小波神经网络(WNN)综合能源系统负荷预测模型存在收敛速度慢、易陷入局部最优等缺点而导致预测精度不高的问题,文中提出了一种基于改进粒子群(IPSO)的WNN综合能源系统短期负荷预测方法。首先,利用Pearson系数对各影响因素进行分析,选择合适的因素作为综合能源负荷预测的输入量;其次,对传统粒子群算法进行改进,在PSO中引入混沌算法并根据粒子适应度采用不同的粒子惯性权重选择策略;然后基于IPSO建立了WNN综合能源系统短期负荷预测模型。最后,通过案例验证,基于IPSO的WNN预测模型相比于传统WNN预测模型,预测精度明显提升。
英文摘要:
      An IPSO-WNN method for short term load prediction of integrated energy system is proposed to solve the problem that the conventional WNN model has the disadvantages of slow convergence speed and easy to fall into local optimum, which leads to the low prediction accuracy. Firstly, the Pearson coefficient is used to analyze the influencing factors and select the appropriate factors as the input quantity of the prediction. Secondly, the traditional particle swarm optimization algorithm is improved. Chaos algorithm is introduced in PSO and different particle inertia weight selection strategies are adopted according to particle fitness, and then IPSO-WNN prediction model was established based on the improved particle swarm algorithm (IPSO) to realize load prediction of comprehensive energy system. Finally, compared with the traditional WNN prediction model, the ipso-based WNN prediction model has improved the prediction time and accuracy.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd