• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于贝叶斯网络的非侵入式家庭负荷动态监测模型
Non-intrusive Household Load Dynamic Monitoring Model Based on Bayesian Network
Received:August 26, 2019  Revised:August 26, 2019
DOI:10.19753/j.issn1001-1390.2020.23.009
中文关键词: 贝叶斯网络  非侵入式负荷监测  用电行为分析  非电量特征  动态监测
英文关键词: Bayesian  Network, Non-intrusive  Load Monitoring, Electricity  Behavior Analysis, Non-electrical  Characteristics, Dynamic  Monitoring
基金项目:
Author NameAffiliationE-mail
Zhang Heng School of Electrical Engineering and Automation Wuhan University Wuhan 430072 China jaqen16@foxmail.com 
Deng Qijun School of Electrical Engineering and Automation Wuhan University Wuhan 430072 China dqj@whu.edu.cn 
Zhou Dongguo* School of Electrical Engineering and Automation Wuhan University Wuhan 430072 China dgzhou1985@whu.edu.cn 
Hits: 1463
Download times: 470
中文摘要:
      智能量测技术是智能电网的重要组成部分,为了实现非侵入式负荷低频监测并进一步提升负荷辨识准确率,文中结合居民用电行为与外界环境相关的特点,提出一种基于贝叶斯网络的非侵入式家庭负荷动态监测模型,该模型选取电气特征和外部数据为特征量,综合考虑居民符合的时间特性和对外部数据的关联特性,对居民用电行为采用贝叶斯网络模型进行建模分析,并随时间推移对特征库进行动态更新,从而实现对家庭负荷的监测作用。本文采用AMPds2公开数据集数据进行算法验证,证明本文算法的准确性和有效性,同时对外部数据和用电行为进行互信息分析,结果表明时段特征对用电行为相关性最强。
英文摘要:
      Intelligent measurement technology is an important part of smart grid. In order to realize non-intrusive load monitoring and further improve the accuracy of load identification, a non-intrusive dynamic load monitoring model based on Bayesian network is proposed in this paper, which combines the characteristics of residential electricity consumption behavior and external environment. Gas characteristics and external data are characteristic quantities. Considering the time characteristics of residents and the correlation characteristics of external data, Bayesian network model is used to model and analyze residential electricity consumption behavior, and the feature database is updated dynamically over time, so as to realize the monitoring function of household load. This paper uses AMPds2 public data set data to verify the algorithm, which proves the accuracy and validity of the algorithm. Mutual information analysis of external data and electricity consumption behavior shows that the time-period characteristics have the strongest correlation with electricity consumption behavior.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd