• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于径向基神经网络的UPQC并联侧谐波电流预测与补偿
Prediction and Compensation of Harmonic Current in Parallel Side of Unified Power Quality Controller Based on Radial Basis Neural Network
Received:August 26, 2019  Revised:August 27, 2019
DOI:10.19753/j.issn1001-1390.2021.08.019
中文关键词: UPQC  谐波提取  径向基神经网络  低频补偿  时滞补偿
英文关键词: UPQC  Harmonic Extraction  Radial Basis Function Neural Network  Low Frequency Compensation  Time Delay Compensation  
基金项目:国家电网公司科技项目(2019YF-01)
Author NameAffiliationE-mail
dingxiying* Shenyang University of Technology xiyingding@163.com 
zhaixiaohan Shenyang University of Technology 2633762335@qq.com 
yaorunyu Shenyang University of Technology 13596179716@163.com 
lichuang Shenyang University of Technology 2456357515@qq.com 
donghenan Shenyang University of Technology 13555878500@163.com 
Hits: 1840
Download times: 394
中文摘要:
      UPQC并联侧谐波电流补偿精度直接影响电网供电质量,传统指令电流信号提取ip-iq法存在低通滤波器及多种坐标变换算法,低频谐波无法被滤除且电流补偿存在一拍时滞。针对UPQC指令电流信号提取精度问题,提出径向基神经网络与ip-iq法结合的谐波电流提取方法,增加低频谐波提取环节,训练径向基神经网络拟合ip-iq法补偿过程中的时滞误差,生成谐波电流补偿模块,补偿ip-iq法谐波电流提取偏差。分别对传统ip-iq法和所提出的指令电流提取方案进行电流补偿效果分析,经过改进后,电网电流的谐波含量从ip-iq法的6.42%下降到4.25%,验证了所提出指令电流提取策略的有效性。
英文摘要:
      The accuracy of harmonic current compensation on UPQC parallel side directly affects the quality of power supply. The traditional ip-iq method for extracting instruction current signals uses low-pass filters and coordinate transformation algorithms, which make the low-frequency harmonics unable to be filtered and there is a beat delay in compensation. Aiming at the problem of accuracy of UPQC instruction current signal extraction, a harmonic current extraction method based on RBF neural network and ip-iq method is proposed, which increases low frequency harmonic extraction, and the radial basis neural network is trained to fit the time-lag error in the ip-iq compensation process, generates harmonic current compensation module to compensate for the ip-iq method harmonic current extraction deviation. The current compensation effect of the traditional ip-iq method and the proposed instruction current extraction scheme is analyzed. After improvement, the harmonic content of the grid current decreases from 6.64% to 4.25% of the ip-iq method, which verifies the effectiveness of the proposed instruction current extraction strategy.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd