HOME
About Journal
Historical evolution
Journal Honors
Editorial Board
Members of Committee
Director of the Committee
President and Editor in chief
Submission Guide
Instructions for Authors
Manuscript Processing Flow
Model Text
Procedures for Submission
Academic Influence
Open Access
Ethics&Policies
Publication Ethics Statement
Peer Review Process
Academic Misconduct Identification and Treatment
Advertising and Marketing
Correction and Retraction
Conflict of Interest
Authorship & Copyright
Contact Us
Chinese
Site search
Article Number
On-site news
English title
Author's English Name
Author's Chinese Name
Chinese name of the company
English name of the compan
Chinese keywords
English keywords
Chinese Abstract
English Abstract
Fund projects
Article Number
Chinese Title
English title
Author's English Name
Author's Chinese Name
Chinese name of the company
English name of the compan
Chinese keywords
English keywords
Chinese Abstract
English Abstract
Fund projects
文章摘要
基于深度神经网络与权值共享的工业园区负荷预测
A deep multitask learning approach for load forecasting and its task aggregation analysis
Received:September 11, 2019
Revised:September 11, 2019
DOI:
10.19753/j.issn.1001-1390.2021.01.020
中文关键词
:
工业园区负荷预测
深度学习
权值共享
任务聚合
英文关键词
:
industrial-park
load forecasting, deep
learning, weight
sharing, tasks
clustering
基金项目
:
国家自然科学基金项目( 59577060),国家高技术研究发展计划(863计划)特大型城市电网防御大停电的应急调度与恢复关键技术研究
Author Name
Affiliation
E-mail
Wang Gang
State Grid Tianjin Electric Power Company
,
Tianjin
359690477@qq.com
Yang Xiaojing
State Grid Tianjin Electric Power Company
,
Tianjin
yangxj@qq.com
Zhang Zhijun
State Grid Tianjin Chengnan Power Supply Branch
,
Tianjin
zhangzhijun123@163.com
Liu Lixin
Beijing Tsingsoft Technology Co
,
Ltd
,
Beijing
,
China
1156039469@qq.com
Yu Meili
Beijing Tsingsoft Technology Co
,
Ltd
,
Beijing
,
China
2813964@qq.com
Abinet Tesfaye Eseye
*
North China Electric Power University
,
State Key Laboratory of Alternative Electrical Power System With Renewable Energy Sources
1423305270@qq.com
Hits
:
2293
Download times
:
605
中文摘要
:
电力体制市场化的有序推进对工业园区负荷预测提出了新的要求。本文提出了基于深度学习与权值共享机理的负荷预测方法。在预测模型中,将深度置信网络设置为训练中的有监督学习方法,权值共享模式分析了多个目标之间的相关性,并使用各个目标的负荷变化率对相关度最高的任务聚合。算例中使用广东某高新区数据对算法有效性进行了验证,结果显示本文算法有效提高了工业园区负荷预测的精度,有着较高应用价值。
英文摘要
:
View Full Text
View/Add Comment
Download reader
Close
Home
About Journal
Historical evolution
Journal Honors
Editorial Board
Members of Committee
Director of the Committee
President and Editor in chief
Submission Guide
Instructions for Authors
Manuscript Processing Flow
Model Text
Procedures for Submission
Academic Influence
Open Access
Ethics&Policies
Publication Ethics Statement
Peer Review Process
Academic Misconduct Identification and Treatment
Advertising and Marketing
Correction and Retraction
Conflict of Interest
Authorship & Copyright
Contact Us
中文页面