• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于深度神经网络与权值共享的工业园区负荷预测
Load forecasting in industrial park based on deep neural network and weight sharing
Received:September 11, 2019  Revised:September 11, 2019
DOI:10.19753/j.issn.1001-1390.2021.01.020
中文关键词: 工业园区负荷预测  深度学习  权值共享  任务聚合
英文关键词: industrial park load forecasting, deep learning, weight sharing, tasks clustering
基金项目:国家自然科学基金项目( 59577060),国家高技术研究发展计划(863计划)特大型城市电网防御大停电的应急调度与恢复关键技术研究
Author NameAffiliationE-mail
Wang Gang State Grid Tianjin Electric Power Company, Tianjin 300090, China 359690477@qq.com 
Yang Xiaojing State Grid Tianjin Electric Power Company, Tianjin 300090, China yangxj@qq.com 
Zhang Zhijun State Grid Tianjin ChengnanPower Supply Branch, Tianjin 300201, China zhangzhijun123@163.com 
Liu Lixin Beijing Tsingsoft Technology Co., Ltd., Beijing 100085, China 1156039469@qq.com 
Yu Meili Beijing Tsingsoft Technology Co., Ltd., Beijing 100085, China 2813964@qq.com 
Abinet Tesfaye Eseye* North China Electric Power University, Beijing 102206, China 1423305270@qq.com 
Hits: 2907
Download times: 709
中文摘要:
      电力体制市场化的有序推进对工业园区负荷预测提出了新的要求。文章提出了基于深度学习与权值共享机理的负荷预测方法。在预测模型中,将深度神经网络设置为训练中的有监督学习方法,权值共享模式分析了多个目标之间的相关性,并使用各个目标的负荷变化率对相关度最高的任务聚合。算例中使用天津某高新区数据对算法有效性进行了验证,结果显示该算法有效提高了工业园区负荷预测的精度,有着较高的应用价值。
英文摘要:
      The orderly development of marketization of power system brings new requirements for load forecasting in industrial park. This paper proposes a load forecasting method for industrial park based on deep learning and weight sharing. In forecasting models, the deep neural network is regarded as supervised-learning approach, weight sharing is deployed to analyze the correlation among various objectives, and the most related objective task is selected by load change rate. The validity of the algorithm is verified through the simulations performed by actual operating data from industrial park load system in Tianjin. The positive results demonstrate that the proposed algorithm can effectively improve the accuracy of load prediction and has high application value.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd