• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于深度神经网络与权值共享的工业园区负荷预测
A deep multitask learning approach for load forecasting and its task aggregation analysis
Received:September 11, 2019  Revised:September 11, 2019
DOI:10.19753/j.issn.1001-1390.2021.01.020
中文关键词: 工业园区负荷预测  深度学习  权值共享  任务聚合
英文关键词: industrial-park  load forecasting, deep  learning, weight  sharing, tasks  clustering
基金项目:国家自然科学基金项目( 59577060),国家高技术研究发展计划(863计划)特大型城市电网防御大停电的应急调度与恢复关键技术研究
Author NameAffiliationE-mail
Wang Gang State Grid Tianjin Electric Power Company,Tianjin 359690477@qq.com 
Yang Xiaojing State Grid Tianjin Electric Power Company,Tianjin yangxj@qq.com 
Zhang Zhijun State Grid Tianjin Chengnan Power Supply Branch,Tianjin zhangzhijun123@163.com 
Liu Lixin Beijing Tsingsoft Technology Co,Ltd,Beijing,China 1156039469@qq.com 
Yu Meili Beijing Tsingsoft Technology Co,Ltd,Beijing,China 2813964@qq.com 
Abinet Tesfaye Eseye* North China Electric Power University,State Key Laboratory of Alternative Electrical Power System With Renewable Energy Sources 1423305270@qq.com 
Hits: 2443
Download times: 631
中文摘要:
      电力体制市场化的有序推进对工业园区负荷预测提出了新的要求。本文提出了基于深度学习与权值共享机理的负荷预测方法。在预测模型中,将深度置信网络设置为训练中的有监督学习方法,权值共享模式分析了多个目标之间的相关性,并使用各个目标的负荷变化率对相关度最高的任务聚合。算例中使用广东某高新区数据对算法有效性进行了验证,结果显示本文算法有效提高了工业园区负荷预测的精度,有着较高应用价值。
英文摘要:
      
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd