• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于MDPSO的永磁直驱风力发电机参数辨识
Parameter Identification Method of Permanent Magnet Direct Drive Wind Turbine Based on MDPSO
Received:September 12, 2019  Revised:September 12, 2019
DOI:10.19753/j.issn1001-1390.2021.08.011
中文关键词: MDPSO  电机参数  参数辨识  永磁风力发电机
英文关键词: MDPSO  motor parameters  parameter identification  permanent magnet wind turbine
基金项目:国家自然科学(51667019);新疆维吾尔族自治区自然科学(2017D01C029)。
Author NameAffiliationE-mail
Wu Zhanghan School of Electric Engineering,Xinjiang University 99047239@qq.com 
Lin Hong* School of Electric Engineering,Xinjiang University Tseagle@163.com 
Hits: 1356
Download times: 419
中文摘要:
      针对永磁直驱风力发电机的多参数辨识问题以及传统参数辨识方法的收敛精度差、收敛速度慢等问题,提出引入平均最优位置变量的自适应空间搜索向量的改进粒子群算法(MDPSO)对永磁直驱风力发电机参数辨识。首先根据永磁直驱风力发电机定子电压电流模型,进行pade近似并降阶处理后进行离散化建立直驱风力发电机辨识模型;然后引入自适应空间搜索向量和平均最优位置变量改进粒子群算法;最后应用提出的MDPSO辨识直驱风力发电机定子绕组的电阻、电感和磁链等参数。算例仿真结果表明提出的辨识算法具有精度高、计算速度快、稳定性高等特点,从而验证了建立的直驱风力发电机辨识模型及辨识算法的有效性。
英文摘要:
      In this paper, the multi-parameter identification problem of permanent magnet direct-drive wind turbine and the convergence accuracy and slow convergence speed of traditional parameter identification method are proposed. The adaptive space search vector particle swarm optimization (MDPSO) algorithm based on average optimal position variable is proposed. Parameter identification of permanent magnet direct drive wind turbine. Firstly, according to the stator voltage and current model of permanent magnet direct drive wind turbine, the pade approximation and reduced order processing are performed to discretize the generator identification model. Then the adaptive space search vector and the average optimal position variable are introduced to improve the particle swarm optimization algorithm. Finally, Through the MDPSO proposed in this paper, the parameters such as the resistance, inductance and flux linkage of the stator winding of the permanent magnet direct-drive wind turbine are identified. The simulation results show that the proposed identification algorithm has the characteristics of high precision, fast calculation speed and high stability, which verifies the validity of the established direct-drive wind turbine identification model and identification algorithm.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd