• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于HHT及改进Shapley值模型的非平稳负荷短期预测
Short-term load forecasting based on HHT and Shapley value models
Received:September 17, 2019  Revised:September 17, 2019
DOI:10.19753/j.issn1001-1390.2021.10.007
中文关键词: 非平稳性,HHT,重构,shapley
英文关键词: Non-stationary, HHT, reconstruction, shapley
基金项目:江苏省2017六大人才高峰资助项目(XNY-020);2018江苏省高校重大项目(18KJA470002)
Author NameAffiliationE-mail
LIUHAITAO* Nanjing Institute of Technology 13851424346@163.com 
SUNXIAO Nanjing Institute of Technology 1159526410@qq.com 
ZHANGCHAO Nanjing Institute of Technology 1069756941@qq.com 
GUSI Nanjing Institute of Technology 931843532@qq.com 
SUNFANG Nanjing Institute of Technology 2280025265@qq.com 
Hits: 2532
Download times: 450
中文摘要:
      随着需求侧用户终端的智能化水平的提高,短期负荷数据具有非平稳性的特点,单一的负荷预测模型和常规的组合预测模型忽略负荷数据的时序性特点,难以达到满意的预测准确度。针对此种情况,本文提出一种基于HHT和改进shapley值模型的短期负荷预测方法,通过HHT变换对非平稳负荷进行重构得到随机、周期、趋势分量;通过改进shapley值模型确定组合预测各个预测方法的权重分配,并分别应用于随机、周期、趋势分量的预测,将得到的各个预测分量进行叠加得到最终预测值。算例采用单一预测模型、未改进的Shapley组合预测模型和改进后Shapley值的组合预测模型三种方案对非平稳负荷进行短期预测,从模型精确度和稳定性两个角进行对比分析。结果表明,本文提出的预测方法具有更高的精确度和稳定性。
英文摘要:
      With the improvement of intelligence level of demand-side user terminals, short-term load data has the characteristics of non-stationarity. Single load forecasting model and conventional combined forecasting model ignore the timing characteristics of load data, making it difficult to achieve satisfactory prediction accuracy. In view of this situation, this paper proposes a short-term load prediction method based on HHT and improved shapley value model. Through HHT transformation, the non-stationary load is reconstructed to obtain random, periodic and trend components. Through the improvement of shapley value model, the weight distribution of each prediction method of composite prediction is determined, and it is applied to the prediction of random, periodic and trend components respectively, and the final predicted value is obtained by superposition of each predicted component. The short-term prediction of non-stationary load is carried out by using three schemes: single prediction model, unimproved Shapley combination prediction model and improved Shapley combination prediction model. The results show that the prediction method proposed in this paper has higher accuracy and stability.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd