• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于特征金字塔和多任务学习的绝缘子检测模型
Insulator detection model based on feature Pyramid and multi-task learning
Received:September 23, 2019  Revised:October 11, 2019
DOI:10.19753/j.issn1001-1390.2021.04.006
中文关键词: 绝缘子检测  图像分割  特征融合  特征金字塔  多任务学习
英文关键词: insulator detection, image segmentation  feature fusion, feature pyramid, multi-task learning
基金项目:国家电网有限公司科技项目:基于机器视觉的配电网施工工序智能管控关键技术研发(52020518005F);
Author NameAffiliationE-mail
Huang Lin State Grid Beijing Electric Power Corporation Fengtai Power Supply Bureau hll14606@163.com 
Zhao Kai State Grid Beijing Electric Power Corporation Fengtai Power Supply Bureau zhaokai@bj.sgcc.com 
Li Jidong State Grid Beijing Electric Power Corporation Fengtai Power Supply Bureau lijidong@bj.sgcc.com 
Feng Hao State Grid Beijing Electric Power Corporation Fengtai Power Supply Bureau fenghao@bj.sgcc.com 
Wang Yanqing State Grid Beijing Electric Power Corporation Fengtai Power Supply Bureau wangyanqing@bj.sgcc.com 
Ma Bihuan* College of Electrical Engineering, Zhejiang University 11910079@zju.edu.cn 
Hits: 1464
Download times: 399
中文摘要:
      作为输电线路巡检中的关键技术,绝缘子的高效检测在维护输电系统安全稳定运行中发挥着重要作用。针对现有方法存在的易丢失目标位置信息,对于复杂背景下的绝缘子检测精度低等缺点,提出一种基于特征金字塔和多任务学习的绝缘子检测方法:通过融合高、低维度特征信息来构筑特征金字塔,避免目标位置等细节信息的丢失,实现复杂背景中绝缘子的高效检测;引入多任务学习算法,进一步提升模型的泛化能力,提升绝缘子检测精度。利用无人机航拍所得的绝缘子实际图像进行实验,结果表明所提方法可将绝缘子检测精度提升至95.3%,具备较高的工程应用价值。
英文摘要:
      As the key technology of transmission line inspection, insulator detection plays an important role in maintaining the safe and stable operation of transmission system. In order to overcome the shortcomings of existing methods, such as easily losing target location information and low precision of insulator detection in complex background, an insulator detection method based on feature pyramid and multi-task learning is proposed, which combines high and low dimension feature information to construct feature pyramid and avoid the loss of detail information such as target location and realize efficient detection of insulators in complex background. The experimental results show that the proposed method can improve the detection accuracy of insulators to 95.3%, and has high engineering application value.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd