• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于协作智能与子梯度优化算法的电力业务差异化QoS路由策略*
Differentiated QoS Routing Strategy for Electrical Services based on Cooperative Intelligence and Subgradient Optimization Algorithm
Received:October 14, 2019  Revised:October 14, 2019
DOI:DOI: 10.19753/j.issn1001-1390.2020.10.008
中文关键词: 群智能优化  子梯度优化  泛在电力物联网  动态路由策略
英文关键词: swarm intelligence optimization  subgradient optimization  ubiquitous electrical Internet of things  dynamic routing strategy
基金项目:国家自然科学基金项目( 61701197)
Author NameAffiliationE-mail
XU BinTai* State Grid Shandong Electric Power Company Information and Communication Company xubintai@sd.sgcc.com.cn 
ZHOU Jie State Grid Shandong Electric Power Company Information and Communication Company zhoujie@sd.sgcc.com.cn 
YU Qiu-sheng State Grid Shandong Electric Power Company Information and Communication Company yuqiusheng@sd.sgcc.com.cn 
MA Chao State Grid Shandong Electric Power Company Information and Communication Company machao@sd.sgcc.com.cn 
MA Liang State Grid Shandong Electric Power Company Information and Communication Company maliang2@sd.sgcc.com.cn 
Hits: 2242
Download times: 530
中文摘要:
      为不同电力业务提供端到端的、确定性的带宽、时延、丢包率、时延抖动等网络QoS,是未来泛在电力物联网通信网络支撑的关键任务之一。本文提出一种基于协作智能与子梯度优化算法的差异化QoS路由策略,解决电力业务多约束条件下路由选择收敛速度慢、易陷入次优解、解的可行性检验缺失、最优性难以证明等问题;具体而言,利用子梯度方法能够动态调整QoS多约束条件惩罚因子从而在迭代过程执行可行性检验,并在获得最终解时评估其最优性;利用基本蚁群算法改进后的协作机制,提高不同质量路径的区分度,达到快速收敛、避免进入局部次优解的目的。仿真结果表明本文提出的算法较已有方法能够更快地收敛至最优值,且提供了验证解的可行性与最优性手段。#$NL关键词:群智能优化;子梯度优化;泛在电力物联网;动态路由策略
英文摘要:
      To provide end-to-end, deterministic bandwidth, delay, packet loss, delay jitter and other network QoS guarantees for diverse electrical services is one of the critical tasks in communication network underlaying ubiquitous electrical Internet of things. In this paper, a differentiated QoS routing strategy based on cooperative intelligence and subgradient optimization algorithm is proposed to address the issues of route selection under multiple constraints, such as slow convergence, easy to fall into sub-optimal solution, lack of feasibility test of solution and difficult to prove optimality. Specifically, the sub-gradient method can dynamically adjust the weighting coefficients associated with multiple QoS constraints, so as to perform feasibility check of solutions during the iteration. In addition, we put forward an improved coordination mechanism for basic ant colony algorithm, which can be used to improve the discrimination of different links and thus achieve fast convergence and avoidance of entering the local sub-optimal solution. The simulation results show that our proposed algorithm can converge to the optimal routing path faster than the existed heuristic algorithms. Besides, the proposed algorithm provides the verification of solution feasibility and optimality.#$NLKeywords: swarm intelligence optimization; subgradient optimization; ubiquitous electrical Internet of things; dynamic routing strategy
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd