• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于改进BP神经网络的短期电力负荷预测方法研究
Research on Short-term Power Load Forecasting Method Based on Improved BP Neural Network
Received:October 21, 2019  Revised:October 21, 2019
DOI:10.19753/j.issn1001-1390.2019.024.019
中文关键词: 短期负荷预测  猫群算法  BP神经网络  预测模型
英文关键词: Short-term  load forecasting, Cat  swarm optimization, BP  neural network, Prediction  model
基金项目:
Author NameAffiliationE-mail
Wang Kejie* Huaibei Power Supply Company,State Grid Anhui Electric Power Co.,Ltd. Anhui Huaibei 235000 sunjijj2015@163.com 
Zhang Rui Huaibei Power Supply Company,State Grid Anhui Electric Power Co.,Ltd. Anhui Huaibei 235000 sunjijj2015@163.com 
Hits: 1881
Download times: 766
中文摘要:
      针对短期负荷预测精度低、准确性差等问题,本文将猫群算法CSO和BP神经网络相结合用于短期负荷预测,模型的输入因子是负荷数据和气象信息等,利用猫群算法对BP神经网络的权值和阈值进行优化,得到BP神经网络预测模型的最优解,建立短期预测模型。并通过实例验证了预测模型的有效性和有效性,结果表明,改进模型能够有效降低BP神经网络模型的预测误差,提高预测精度。本研究为我国电力系统短期负荷预测的发展提供了参考和借鉴。
英文摘要:
      Aiming at the problems of low accuracy and poor accuracy of short-term load forecasting, a short-term load forecasting method based on cat swarm algorithm CSO and BP neural network is proposed in this paper.The input factors of the model are load data and meteorological information, cat swarm optimization algorithm is used to optimize the weight and threshold of BP neural network, so that the BP neural network forecasting model can be optimized, a short-term load forecasting model of BP neural network based on Optimization of cat swarm algorithm is established.The accuracy and validity of the prediction model are verified by simulation, the results show that the improved model can effectively reduce the prediction error of BP neural network model and improve its prediction accuracy.This study provides a reference for the development of short-term load forecasting of power system in China.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd