• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于耦合GPR-PSO的北京地区中长期电力需求预测
Medium and long-term power demand forecasting in Beijing based on coupled GPR-PSO
Received:October 31, 2019  Revised:October 31, 2019
DOI:10.19753/j.issn1001-1390.2020.02.012
中文关键词: 高斯过程回归,粒子群算法,电力需求预测,神经网络训练
英文关键词: 
基金项目:
Author NameAffiliationE-mail
huangyuansheng Baoding, North China Electric Power University lfjnmg1969@126.com 
hujianjun* Baoding, North China Electric Power University nxhujianjun918@sina.com 
caiyaqian Baoding, North China Electric Power University 625997096@qq.com 
Hits: 2089
Download times: 676
中文摘要:
      建立科学合理的中长期电力需求预测方法,是电力产业科学规划建设的前提。本文构建了基于高斯过程(GPR)和粒子群(PSO)的混合电力需求预测模型。论文采用PSO算法对协方差函数中的参数进行优化,将修正后的参数作为初始值在GPR模型中进行电力需求方面的培训。在贝叶斯框架下,对协方差函数中的参数再次进行优化。最后用训练好的GPR模型进行电力需求预测,并将结果与自回归积分移动平均模型和指数平滑模型进行比较。验证结果表明,基于高斯过程(GPR)和粒子群(PSO)的混合电力需求预测模型具有很好的稳定性和更高的预测精度。
英文摘要:
      
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd