HOME
About Journal
Historical evolution
Journal Honors
Editorial Board
Members of Committee
Director of the Committee
President and Editor in chief
Submission Guide
Instructions for Authors
Manuscript Processing Flow
Model Text
Procedures for Submission
Academic Influence
Open Access
Ethics&Policies
Publication Ethics Statement
Peer Review Process
Academic Misconduct Identification and Treatment
Advertising and Marketing
Correction and Retraction
Conflict of Interest
Authorship & Copyright
Contact Us
Chinese
Site search
Article Number
On-site news
English title
Author's English Name
Author's Chinese Name
Chinese name of the company
English name of the compan
Chinese keywords
English keywords
Chinese Abstract
English Abstract
Fund projects
Article Number
Chinese Title
English title
Author's English Name
Author's Chinese Name
Chinese name of the company
English name of the compan
Chinese keywords
English keywords
Chinese Abstract
English Abstract
Fund projects
文章摘要
基于耦合GPR-PSO的北京地区中长期电力需求预测
Medium and long-term power demand forecasting in Beijing based on coupled GPR-PSO
Received:October 31, 2019
Revised:October 31, 2019
DOI:
10.19753/j.issn1001-1390.2020.02.012
中文关键词
:
高斯过程回归,粒子群算法,电力需求预测,神经网络训练
英文关键词
:
基金项目
:
Author Name
Affiliation
E-mail
huangyuansheng
Baoding
,
North China Electric Power University
lfjnmg1969@126.com
hujianjun
*
Baoding
,
North China Electric Power University
nxhujianjun918@sina.com
caiyaqian
Baoding
,
North China Electric Power University
625997096@qq.com
Hits
:
1931
Download times
:
654
中文摘要
:
建立科学合理的中长期电力需求预测方法,是电力产业科学规划建设的前提。本文构建了基于高斯过程(GPR)和粒子群(PSO)的混合电力需求预测模型。论文采用PSO算法对协方差函数中的参数进行优化,将修正后的参数作为初始值在GPR模型中进行电力需求方面的培训。在贝叶斯框架下,对协方差函数中的参数再次进行优化。最后用训练好的GPR模型进行电力需求预测,并将结果与自回归积分移动平均模型和指数平滑模型进行比较。验证结果表明,基于高斯过程(GPR)和粒子群(PSO)的混合电力需求预测模型具有很好的稳定性和更高的预测精度。
英文摘要
:
View Full Text
View/Add Comment
Download reader
Close
Home
About Journal
Historical evolution
Journal Honors
Editorial Board
Members of Committee
Director of the Committee
President and Editor in chief
Submission Guide
Instructions for Authors
Manuscript Processing Flow
Model Text
Procedures for Submission
Academic Influence
Open Access
Ethics&Policies
Publication Ethics Statement
Peer Review Process
Academic Misconduct Identification and Treatment
Advertising and Marketing
Correction and Retraction
Conflict of Interest
Authorship & Copyright
Contact Us
中文页面