• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
电能表故障预测的代价敏感模型研究
Research on cost-sensitive fault prediction model for smart meters
Received:November 19, 2019  Revised:November 19, 2019
DOI:10.19753/j.issn1001-1390.2021.03.028
中文关键词: 智能电表  故障预测  集成学习  不平衡数据
英文关键词: smart meter  fault prediction  ensemble learning  imbalanced data
基金项目:国家电网公司科技项目“客户侧窃电态势感知及智能预警关键技术研究”(5216A019000U)
Author NameAffiliationE-mail
Zhang Canhui* State Grid Hunan Electric Power Limited Company zch_hnsg@outlook.com 
Zhao Dan State Grid Hunan Electric Power Limited Company zch_hnsg@outlook.com 
He Xing State Grid Hunan Electric Power Limited Company zch_hnsg@outlook.com 
Fan Rui State Grid Hunan Electric Power Limited Company zch_hnsg@outlook.com 
Xu Huiting State Grid Hunan Electric Power Limited Company zch_hnsg@outlook.com 
Hits: 1799
Download times: 454
中文摘要:
      对电能表故障的准确预测是及时处理异常电表,实现拆回电表的自动分拣与质量评估的关键环节。为解决电表故障预测这一高度不平衡的分类问题,提出一种代价敏感的多分类集成树模型。通过层次聚类等预处理技术,对数据特征维度进行压缩以抑制过拟合。通过优化基于类别先验概率设计的代价敏感目标函数,模型可以有效克服由于数据集不平衡导致的偏差。在真实数据集的测试表明,模型对电表故障预测的精度达到较高水平。
英文摘要:
      Accurate fault prediction for smart meters is a key part of timely processing of abnormal meters and automatic verification of removing meters. To solve the highly imbalanced multi-classification task of smart meter fault prediction, a cost-sensitive ensemble tree model is proposed. In the stage of data preprocessing, hierarchical clustering and other techniques are used for reducing the dimension of features and alleviate the effect of the overfitting. Through optimizing the cost-sensitive objective function based on class prior, the proposed model can effectively overcome the bias caused by the imbalanced data. Experimental results on real-world dataset indicate that the proposed model performs well in fault prediction task.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd