• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
一种融合时间特征的非侵入式负荷辨识决策方法
Non-intrusive load identification decision method based on time signatures
Received:November 27, 2019  Revised:December 23, 2019
DOI:10.19753/j.issn1001-1390.2020.04.021
中文关键词: 非侵入式  负荷辨识  时间特征  mean-shift聚类  贝叶斯决策方法
英文关键词: non-intrusive, load identification, time signature, mean-shift clustering, Bayesian decision-making method
基金项目:
Author NameAffiliationE-mail
Tian Zhengqi* Electric Power Research Institute of State Grid Jiangsu Electric Power Co,Ltd 2801107557@qq.com 
Xu Qing Electric Power Research Institute of State Grid Jiangsu Electric Power Co,Ltd davicii@qq.com 
Li Ruyi Henan Xuji Instrument Co., Ltd. 565788946@qq.com 
Zhao Shuangshuang Electric Power Research Institute of State Grid Jiangsu Electric Power Co,Ltd 592357212@qq.com 
Hits: 1227
Download times: 391
中文摘要:
      针对家庭负荷用电场景中负荷类别的不确定性,以及非侵入式负荷监测设备数据库中负荷特征库的不完备等,极易导致负荷辨识准确率下降的问题,本文在利用电气特征的基础上,提出了一种融合负荷运行时长、运行时段、工作周期及假期特性这些时间特征的非侵入式负荷辨识决策方法。在该方法中,首先通过分段归一化的mean-shift聚类方法对检测得到的负荷事件特征进行聚类统计,获取潜在的负荷类别数,然后对用电设备负荷事件的时间特性进行统计,同时计算负荷功率特征度量负荷事件所产生的概率,并采用贝叶斯方法对负荷进行决策辨识。最后,本文采用AMPds公共数据集进行实际测试,实验结果表明该方法对该场景具有较好的辨识效果。
英文摘要:
      Considering the problems of the uncertainty of the load type in household scenario and the incompleteness of the load signature database in the non-intrusive load database, which can easily lead to the decrease of the accuracy in load identification, this paper proposes a load identification method to cope with these problems. On the base of electrical signatures, this method also use time signature which includes the characteristics of the length of operation time, load operation time, working period and vacation. In this method, firstly, we use the piecewise- normalization mean-shift clustering method to cluster the detected load event features and obtain the number of potential load types. Then we count the time signature and power signature of load events to get their probability. And the Bayesian method is used to identify the load by decision-making. Finally, this paper uses the AMPds public data set to do the actual test, the experimental results show that this method has the good identification effect to this scene.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd