• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于图像特征和深度森林的乙丙橡胶电缆绝缘老化状态识别
IIdentification of aging state of EPR cable insulation based on image feature and deep forest
Received:December 02, 2019  Revised:December 18, 2019
DOI:DOI: 10.19753/j.issn1001-1390.2022.06.005
中文关键词: 乙丙橡胶  局部放电  图像特征  深度森林
英文关键词: EPR, partial discharge, image characteristics, deep forest
基金项目:
Author NameAffiliationE-mail
Wang Ke* Yunnan Elecric Power Research Institute,Yunnan Power Co,Ltd 541046507@qq.com 
Xiang Enxin Yunnan Elecric Power Research Institute,Yunnan Power Co,Ltd 419722987@qq.com 
Cao Weidong College of Electrical Engineering Southwest Jiaotong University Chengdu 541046507@qq.com 
Xu Xiaowei Yunnan Elecric Power Research Institute,Yunnan Power Co,Ltd 40858480@qq.com 
Huang Jisheng Lincang Power Supply Bureau,Yunnan Power Co,Ltd Lincang huangxusheng@yn.csg.cn 
Che Yuxuan College of Electrical Engineering Southwest Jiaotong University Chengdu 541046507@qq.com 
Hits: 1504
Download times: 420
中文摘要:
      为了更准确地对乙丙橡胶电缆绝缘老化状态进行识别,提出了一种基于局部放电图像特征和深度森林的识别方法。文中制备了不同老化状态的乙丙橡胶试样,搭建了局部放电试验平台,通过试验获得了不同老化状态的乙丙橡胶试样局部放电谱图,并从局部放电谱图中提取了19个特征参量,结合深度森林网络对不同老化程度的试样进行识别。结果表明:通过结合局部放电谱图特征和深度森林网络能够准确的识别电缆老化状态,且识别率优于其他传统分类算法。将局部放电图像特征与深度森林结合应用于电缆的绝缘老化诊断具有较好地工程应用前景。
英文摘要:
      In order to identify the aging state of EPR cable insulation more accurately, a recognition method based on partial discharge image features and the deep forest is proposed. In this paper, EPR samples with different aging states are prepared, and a PD test platform is built. The PD spectra of EPR samples with different aging states are obtained through the test, and 19 characteristic parameters are extracted from the PD spectra. The samples with different aging degrees are identified by combining the deep forest network. The results show that, by combining the PD spectra characteristics Token and deep forest network can accurately identify the aging state of cable, and the recognition rate is better than other traditional classification algorithms. The combination of PD image features and the deep forest has a good engineering application prospect in cable insulation aging diagnosis.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd