• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
改进的Faster-RCNN目标检测方法在变电站悬挂异物检测中的应用
Application of an improved Faster-RCNN object detection method in the detection of suspended foreign matters in substation
Received:December 13, 2019  Revised:December 13, 2019
DOI:10.19753/j.issn.1001-1390.2021.01.021
中文关键词: 变电站悬挂异物检测  Faster-RCNN  特征金字塔  可变性卷积
英文关键词: detection of suspended foreign matters in substation, Faster-RCNN, feature pyramid network, deformable convolutional networks
基金项目:国家电网公司总部科技项目:变电设备多谱段光谱视频智能巡检技术研究;国网浙江省电力有限公司科技项目:变电站内设备异常状态及运动物体异常行为的智能识别方法研究;浙江省重点研发计划:人工智能开源开放创新服务平台开发及应用——电力行业图像识别开源开放创新服务平台研发
Author NameAffiliationE-mail
Liu Li State Grid Zhejiang Electric Power Research Institute, Hangzhou 310014, China liylye@163.com 
Han Rui State Grid Zhejiang Electric Power Research Institute, Hangzhou 310014, China 404468876@qq.com 
Han Yifeng* School of Electrical Engineering, Zhejiang University, Hangzhou 310027, China hanyf@zju.edu.cn 
Qi Donglian School of Electrical Engineering, Zhejiang University, Hangzhou 310027, China qidl@zju.edu.cn 
Yan Yunfeng School of Electrical Engineering, Zhejiang University, Hangzhou 310027, China 21210004@zju.edu.cn 
Hits: 2070
Download times: 746
中文摘要:
      针对变电站悬挂异物检测任务中异物形状多样、周围环境条件复杂,现有算法检测的准确率较低的问题,提出一种改进的Faster-RCNN目标检测方法,对变电站悬挂异物进行检测。将Faster-RCNN结合特征金字塔和可变性卷积,形成了改进的Faster-RCNN目标检测方法,扩展了Faster-RCNN网络结构对输入图片中不同尺度语义信息的读取,提升了网络对小目标的检测能力。采用了变电专业设备典型缺陷图像识别竞赛中的悬挂异物图像数据进行仿真实验,并与原有Faster-RCNN算法进行对比,实验结果验证了所提出方法的有效性,算法识别准确率得到提高,在真实样本中表现好,可有效应用于变电站巡检机器人系统中。
英文摘要:
      Aiming at the problems of various shapes of foreign matter, high complexity of surrounding environment and low accuracy of existing algorithm in the detection of suspended foreign objects in substations, this paper proposes an improved Faster-RCNN object detection method. Combining Faster-RCNN with feature pyramid networks and deformable convolutional networks, an improved Faster-RCNN object detection method is formed. The detection method strengthens the ability of Faster-RCNN to read semantic information of different scales in the input images, therefore improving its ability on detecting small objects. The image data is used in the image recognition model competition for typical defects of substation equipment, and the simulation experiment is carried out and compared with original Faster-RCNN. The experimental results verify the effectiveness of the proposed method. The improved algorithm, which has higher recognition accuracy and performs well on real detection samples, which can be effectively used in the substation inspection robot system.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd