• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
改进的Faster-RCNN目标检测方法在变电站悬挂异物检测中的应用
An improved Faster-RCNN object detection method with its application in detection of suspended foreign matters in substation
Received:December 13, 2019  Revised:December 13, 2019
DOI:10.19753/j.issn.1001-1390.2021.01.021
中文关键词: 变电站悬挂异物检测  Faster-RCNN  特征金字塔  可变性卷积
英文关键词: detection of suspended foreign matters  Faster-RCNN  Feature pyramid networks  Deformable convolutional networks
基金项目:国家电网公司总部科技项目:变电设备多谱段光谱视频智能巡检技术研究;国网浙江省电力有限公司科技项目:变电站内设备异常状态及运动物体异常行为的智能识别方法研究;浙江省重点研发计划:人工智能开源开放创新服务平台开发及应用——电力行业图像识别开源开放创新服务平台研发
Author NameAffiliationE-mail
Liu Li State grid Zhejiang electric power research institute liylye@163.com 
Han Rui State grid Zhejiang electric power research institute 404468876@qq.com 
Han Yifeng* College of Electrical Engineering, Zhejiang University hanyf@zju.edu.cn 
Qi Donglian College of Electrical Engineering, Zhejiang University qidl@zju.edu.cn 
Yan Yunfeng College of Electrical Engineering, Zhejiang University 21210004@zju.edu.cn 
Hits: 1749
Download times: 641
中文摘要:
      针对变电站悬挂异物检测任务中异物形状多样、周围环境条件复杂,现有算法检测的准确率较低的问题,本文提出一种改进的Faster-RCNN目标检测方法,对变电站悬挂异物进行检测。方法结合了特征金字塔和可变性卷积的想法,扩展了Faster-RCNN骨干网络对输入图片中不同尺度语义信息的读取,提升了Faster-RCNN对小目标的检测能力。采用了变电专业设备典型缺陷图像识别竞赛中的悬挂异物图像数据进行仿真实验,并于Faster-RCNN算算法进行对比,实验结果验证了所提出方法的有效性,算法识别准确率得到提高,在真实样本中表现好,可有效应用于变电站巡检机器人系统中。
英文摘要:
      Aiming at the problems of various shapes of foreign matter, high complexity of surrounding environment and low accuracy of existing algorithm in the detection of suspended foreign objects in substations, this paper proposes an improved Faster-RCNN object detection method. Combining the idea of feature pyramid networks and deformable convolutional networks, the method strengthens the ability of Fast-RCNN backbone to read semantic information of different scales in the input images, therefore improves its ability on detecting small objects. Using the image data in the Image Recognition Model Competition for Typical defects of substation equipment, the simulation experiment is carried out and compared with original Faster-RCNN. The experimental results verify the effectiveness of the proposed method. The improved algorithm, which has higher recognition accuracy and performs well on real detection samples, can be effectively used in the substation inspection robot system.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd