• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于集群智能的智能电能表异常检测技术
Anomaly detection technology based on swarm intelligence for smart meters
Received:December 24, 2019  Revised:December 24, 2019
DOI:10.19753/j.issn1001-1390.2022.01.027
中文关键词: 智能电表  异常检测  集群智能  高级计量体系
英文关键词: smart meter  anomaly detection  swarm intelligence  advanced metering infrastructure
基金项目:
Author NameAffiliationE-mail
Bai Zhixia* State Grid Shanxi Electric Power Corporation Metrological Center zhixia.bai@outlook.com 
Liu Xinhui State Grid Shanxi Electric Power Corporation Metrological Center zhixia.bai@outlook.com 
Suo Siyuan State Grid Shanxi Electric Power Corporation Metrological Center zhixia.bai@outlook.com 
Chen Wen State Grid Shanxi Electric Power Corporation Metrological Center zhixia.bai@outlook.com 
Hits: 1883
Download times: 418
中文摘要:
      智能电能表是智能电网与高级计量体系(Advanced Metering Infrastructure,AMI)中的重要基础设施,有效提升了电力系统的自动化与智能化,但同时也面临更隐蔽与更广泛的攻击形式。针对智能电能表的异常检测问题,提出三类基于集群智能(Swarm Intelligence,SI)的异常检测技术,分别从矢量距离,置信度与Kullback?Leibler散度三种指标出发识别出异常设备。首先在每个随机形成的群体中标记可疑的智能电表,并在一定次数的迭代后作出决策。在真实数据集上的实验结果表明,算法在充分提升召回率的同时有效降低了误报率,具有较高实用性。
英文摘要:
      Smart meters play important and basic role in advanced metering infrastructure (AMI), which efficiently improve automation and intelligence of power system. However, this modernization also introduced a lot of scope for the different anomalies and attacks on smart meters. To solve the anomaly detection problem for smart meters, three swarm intelligence based anomaly detection methods are proposed, which are based on vector distance, honesty coefficient and Kullback-Leibler divergence. The proposed algorithms mark suspicious smart meters in randomly formed swarms, and make decisions after iterations. Experimental results on real-world dataset demonstrate that the proposed algorithms are of high detection rate and low false alarm rate, which are highly practicable.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd