• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于ANFIS的变压器寿命预测和状态评估
Transformer Life Estimation and State Assessment Based on ANFIS
Received:December 25, 2019  Revised:December 25, 2019
DOI:10.19753/j.issn1001-1390.2022.01.008
中文关键词: 变压器  寿命预测  状态评估  自适应模糊神经网络
英文关键词: transformer, life estimation,state assessment,ANFIS
基金项目:国家自然科学基金项目( 51777119)
Author NameAffiliationE-mail
Hu Biwei Shanghai University of Electric Power 931425478@qq.com 
Deng Xiangli* Shanghai University of Electric Power 884236416@qq.com 
Jia Shenghao Jiangsu Xingli Construction Group Co., Ltd 354834163@qq.com 
Hits: 2185
Download times: 497
中文摘要:
      变压器寿命和运行状态准确的评估对其检修策略的制定有着重要的指导意义。为了实现对变压器寿命和状态进行客观的科学的评估,本文构建了基于自适应模糊神经网络(ANFIS)的多特征诊断参数的变压器寿命预测和状态评估方法。首先提取影响变压器寿命的特征参数,通过自适应模糊神经网络对这些特征参数进行学习,利用反向传播算法解决权重的自适应动态调整,构建变压器的寿命预测模型;在其基础上结合油中溶解气体建立一种变压器综合健康状态评估模型。通过实验数据研究论证,该模型能够准确的有效的诊断变压器寿命和状态,同时相比传统方法有更高的预测精度和评估精度,是一种新的有效的变压器状态评估方法。
英文摘要:
      In Accurate assessment of transformer life and operating conditions has important guiding significance for the formulation of its maintenance strategy. In order to achieve objective and scientific assessment of transformer life estimation and condition assessment, this paper constructs a transformer life prediction and condition assessment method based on multi-feature diagnostic parameters of adaptive fuzzy neural network (ANFIS). First extract the characteristic parameters that affect the life of the transformer, learn these characteristic parameters through an adaptive fuzzy neural network, use the back-propagation algorithm to solve the adaptive dynamic adjustment of the weights, build a life prediction model of the transformer, and then build a A comprehensive health assessment model for transformers. Through experimental data research and demonstration, this model can accurately and effectively diagnose the life and state of transformers, and at the same time has higher prediction accuracy and assessment accuracy than traditional methods. It is a new and effective method for transformer state assessment.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd