• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于智能电能表的智慧城市峰值负荷概率估计
Peak load probability estimation of smart city based on smart meter
Received:January 02, 2020  Revised:February 02, 2020
DOI:10.19753/j.issn1001-1390.2021.09.025
中文关键词: 同步峰值需求  配电网规划  概率估计  R-vine copulas  智能电能表
英文关键词: synchronous peak demand, distribution network planning, probability estimation, R-vine copulas, smart meters
基金项目:
Author NameAffiliationE-mail
Liu Ying State Grid Jibei Electric Power Research Institute Co., Ltd., Beijing 100053, China 428399914@qq.com 
Liu Yan* State Grid Jibei Electric Power Research Institute Co., Ltd., Beijing 100053, China plliuyan1989@163.com 
Yan Kai State Grid Hebei Electric Power Co., Ltd., Beijing 100053, China yankai136@163.com 
Yue Zhenyu State Grid Jibei Tangshan Power Supply Co., Ltd., Tangshan 063000, Hebei, China yuezhenyu332@163.com 
Peng Xinxia State Grid Jibei Electric Power Research Institute Co., Ltd., Beijing 100053, China pengxinxiaxia@163.com 
Hits: 1559
Download times: 485
中文摘要:
      充足的变电站和馈线的容量规划主要取决于对未来高峰电力需求的准确估计。然而,传统的未来峰值需求估计是基于经验值进行度量,在多样性最大需求之后进行的,表示个体峰值消费水平和多居民需求多样性。针对智能城市智能电能表的特点,提出了一种基于细粒度智能电能表数据和用户社会人口统计数据的数据驱动的概率峰值用电量估算框架。特别是,在提出的方法中集成了四个主要阶段: 负荷建模和抽样;通过所提出的可变截断 R-vine 连接方法;基于相关性的客户分组;归一化最大多样化需求估计和新客户的概率峰值需求估计。利用平均绝对百分误差和弹球损失函数定量地证明了该方法在点估计值和概率结果上的优越性。
英文摘要:
      Adequate capacity planning of substations and feeders mainly depends on accurate estimation of future peak power demand. However, the traditional future peak demand estimation is based on the empirical measurement, which is conducted after the maximum diversity demand, and represents the individual peak consumption level and the diversity of multi-resident demand. According to the characteristics of the smart meter in smart city, a data-driven peak probability power consumption estimation framework based on fine-grained smart meter data and user social demographic data is proposed in this paper. In particular, four major phases are integrated into the proposed approach, including load modeling and sampling, the proposed variable truncation R-vine linkage approach, correlation-based customer grouping, normalized maximum diversification demand estimation, and probabilistic peak demand estimation for new customers. The superiority of the proposed method in point estimation and probability results is proved quantitatively by means of mean absolute percentage error and marble loss function.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd