• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
全自动运行地铁列车蓄电池在线监测系统设计
Design of on-line monitoring system for storage battery of fully automatic metro train
Received:January 19, 2020  Revised:January 19, 2020
DOI:10.19753/j.issn1001-1390.2021.03.027
中文关键词: 在线监测  信号采集  剩余电量估算  卡尔曼滤波  健康管理
英文关键词: On line monitoring  signal acquisition  residual power estimation  Kalman filter  health management
基金项目:
Author NameAffiliationE-mail
YIN HANG* CRRC Changchun Railway Vehicles Co.,LTD. yinhang_cnr@126.com 
Zheng Caihui CRRC Changchun Railway Vehicles Co.,LTD. zhengcaihui@cccar.com.cn 
Wang Liangyong Changsha Qin Kai Intelligent Technology Co., LTD. qk_wangly@163.com 
Hits: 2161
Download times: 484
中文摘要:
      本文介绍了全自动运行地铁列车上应用的蓄电池在线监测系统的系统组成及工作原理,详细地阐述了蓄电池剩余电量SOC的估算方法。此系统不但能够有效的利用和管理车载电池的能量,保证电池维持在正常的工作范围之内,延长车载电池的使用寿命,还能将检测的参数通过以太网上传至云端服务器,建立大数据库,反复训练蓄电池模型,用于分析蓄电池的维护运行情况和性能状态,对蓄电池的健康状况做出早期的预测,保证蓄电池的安全性。
英文摘要:
      This paper introduces the system composition and working principle of the battery on-line monitoring system applied in the fully automatic operation of metro train, and expounds the estimation method of SOC of the remaining battery in detail. This system can not only effectively use and manage the energy of the vehicle battery, ensure the battery to maintain within the normal working range, extend the service life of the vehicle battery, but also upload the test parameters to the cloud server through Ethernet, establish a large database, train the battery model repeatedly, which is used to analyze the maintenance and operation of the battery and the performance status of the battery Make early prediction of health status to ensure the safety of battery.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd