• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
考虑量测相关性的容积卡尔曼滤波动态状态估计
Dynamic state estimation of power system based on cubature Kalman filter considering measurement correlation
Received:February 03, 2020  Revised:February 11, 2020
DOI:DOI: 10.19753/j.issn1001-1390.2022.10.023
中文关键词: 容积变换  容积卡尔曼滤波  量测相关性  动态状态估计
英文关键词: cubature transformation, CKF, measurement correlation, dynamic state estimation
基金项目:国家重点研发计划(2017YFB0902902)
Author NameAffiliationE-mail
Lu Qingchun School of Electrical Engineering and Automation,Wuhan University luqingchun17@whu.edu.cn 
Zhang Jun* School of Electrical Engineering and Automation,Wuhan University jun.zhang.ee@whu.edu.cn 
Xu Peidong School of Electrical Engineering and Automation,Wuhan University xupd@whu.edu.cn 
Chen Siyuan School of Electrical Engineering and Automation,Wuhan University wddqcsy@whu.edu.cn 
Xu Jian School of Electrical Engineering and Automation,Wuhan University xujian@whu.edu.cn 
Ke Deping School of Electrical Engineering and Automation,Wuhan University kedeping@whu.edu.cn 
Hits: 1459
Download times: 345
中文摘要:
      针对电力系统动态状态估计中数据采集与监视控制(Supervisory Control and Data Acquisition,SCADA)系统量测量间存在相关性的实际情况,文中提出了一种考虑量测相关性的容积卡尔曼滤波动态状态估计方法。进行了SCADA系统量测相关性分析,然后基于状态转移方程推导过程噪声协方差矩阵,基于容积变换方法计算考虑SCADA系统量测相关性的量测误差协方差矩阵,并提出了考虑量测相关性的电力系统动态状态估计流程,每次估计实时修正量测误差协方差矩阵及过程噪声协方差矩阵。IEEE-39节点系统的仿真结果表明,相较于不考虑量测相关性的容积卡尔曼滤波算法,文中方法能够明显提高状态估计结果的精度。
英文摘要:
      Aiming at the situation that there are correlations among measurements of supervisory control and data acquisition (SCADA), this paper proposes a cubature Kalman filter (CKF) method for dynamic state estimation of power system considering SCADA measurement correlation. Firstly, this paper analyzes the reason of measurement correlation for SCADA system. Then, the process noise covariance matrix is derived based on state transition equation, and cubature transformation method is used to calculate the measurement error covariance matrix of SCADA system. The dynamic state estimation process of power system considering measurement correlation is proposed, and the measurement error covariance matrix and process noise covariance matrix are corrected in real time for each estimation. The simulation results on IEEE-39 system demonstrate that the proposed method can significantly improve the accuracy of state estimation results compared with the CKF algorithm without considering measurement correlation.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd