• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于多元大数据融合的智能电能表可靠性评估模型
Reliability estimation model for smart meters based on multi-source big data fusion
Received:February 05, 2020  Revised:February 18, 2020
DOI:10.19753/j.issn1001-1390.2023.01.001
中文关键词: 智能电能表  可靠性评估  数据融合  生存分析  深度神经网络
英文关键词: smart meter, reliability estimation, data fusion, survival analysis, deep neural networks
基金项目:如果文章受资助,请在单位介绍信中填写相关信息,全称及其编号排于篇首页左下方,与正文用细横线分隔。多个之间用“;”分隔,项目名称后必须有项目编号,编号置于圆括号内。
Author NameAffiliationE-mail
Zhang Jiaqi Department of Electrical Engineering, Tsinghua University, Beijing 100084, China 1343057716@qq.com 
Guo Shuai* State Grid Beijing Electric Power Company, Beijing 100031, China 1361278895@qq.com 
Li Guochang State Grid Beijing Electric Power Company, Beijing 100031, China gc_li@sohu.com 
Chen Ying Department of Electrical Engineering, Tsinghua University, Beijing 100084, China chen_ying@mail.tsinghua.edu.cn 
Song Weiqiong State Grid Beijing Electric Power Company, Beijing 100031, China swq_1984@163.com 
Guan Huizhe Department of Electrical Engineering, Tsinghua University, Beijing 100084, China guanhz18@mails.tsinghua.edu.cn 
Hits: 2008
Download times: 366
中文摘要:
      智能电能表是电能计量体系的基础单元,广泛部署于用户侧。针对其量大而难以维护的问题,建立了基于多源大数据融合分析的智能电能表可靠性评估模型。为了充分发掘智能电能表设计、检修和运行数据中的有用信息,对多源大数据进行融合整理,得到了影响智能电能表寿命的协变量数据和智能电能表生存标签。基于生存分析理论建立智能电能表生命周期CoxPH模型,并采用深度神经网络表征强非线性关联参数,形成智能电能表的可靠性评估模型。基于某城市实际智能电能表运维数据,对所建模型的有效性进行了验证。测试结果表明,所建模型可以基于智能电能表的实时运行状态实现可靠性评估,为智能电能表运维工作提供辅助决策。
英文摘要:
      Smart meters are the basic unit of the energy metering system, which are widely deployed on the user side. Aiming at the problem of the difficulty of maintenance due to their large amount, a smart meter reliability estimation model based on multi-source big data fusion is proposed in this paper. In order to fully explore the useful information in the design, maintenance and operation data of the smart meter, the multi-source big data is merged and collated to obtain the covariate data and the smart meter survival label that affect the life span of smart meters. Based on the survival analysis theory, a cox proportional-hazards(CoxPH) model for the life cycle of a smart meter is established, and a deep neural network is used to characterize strongly non-linear correlation parameters to form a reliability estimation model for the smart meter. Based on the actual operation and maintenance data of smart meters of some city, the effectiveness of the proposed model is verified. Test results show that the proposed model, which provides subsidiarity for smart meter maintenance, and can estimate reliability of the smart meter successfully based on its real-time running status.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd