• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
一种改进的基于卷积神经网络的绝缘子检测算法研究
Research on insulator detection based on Faster R-CNN
Received:February 24, 2020  Revised:February 24, 2020
DOI:10.19753/j.issn1001-1390.2022.05.015
中文关键词: 绝缘子  卷积神经网络  Faster R-CNN  Anchor  NMS  检测  
英文关键词: Insulator  Convolutional neural network  Faster R-CNN  Anchor  NMS  Detection
基金项目:吉林省科技厅项目(20180201010GX);吉林省教育厅项目(JJKH20180440KJ)
Author NameAffiliationE-mail
Wu Junpeng Northeast Electric Power University 181966366@qq.com 
Tang Shaobo* Northeast Electric Power University t1985193484@163.com 
Li Xianglei Northeast Electric Power University 13298465864@163.com 
Zhang Shi Northeast Electric Power University 784347@qq.com 
Hits: 1297
Download times: 338
中文摘要:
      针对国内目前在电力行业中对绝缘子检测效率低下且存在安全隐患等问题,文中提出了一种改进的基于卷积神经网络的绝缘子检测方法。该方法为解决检测时因绝缘子大小比例多样化造成的检测不精准问题以及因绝缘子数量多或角度问题造成相互间遮挡以致漏检误检的问题,对Faster R-CNN中anchor的尺度以及宽高比做出了修改,同时对NMS后处理算法进行改进,引入了多阶段的惩罚因子,以适应于多尺度、多比例、绝缘子重叠遮挡等复杂情况。通过改进的Faster R-CNN算法可以对绝缘子进行精准检测,同时输出坐标框和概率值。实验结果表明,改进后的Faster R-CNN的检测方法将AP由0.7977提高到了0.9058,显著改善了绝缘子的漏检、误检情况。
英文摘要:
      Aiming at the low efficiency and potential safety problems of insulator detection in power industry in China, an improved insulator detection method based on convolutional neural network is proposed in this paper.The method to solve the detection caused by insulator size scale diversification inaccurate detection problem and caused by insulator number or Angle problem between shade so that the residual error detection problem, the Faster-RCNN anchor in the scale of the width to height ratio and made changes, to NMS post-processing algorithm was improved at the same time, the introduction of phased punishment factor, to adapt to the overlap in multi-scale, more proportion, insulator block such as complicated situation.The improved Faster R-CNN algorithm can accurately detect the insulator and output the coordinate box and the probability value at the same time.Experimental results show that the improved Faster R-CNN detection method improves the AP from 0.7977 to 0.9058, and significantly improve the situation of missed and false detection of the insulator.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd