• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
一种改进的基于卷积神经网络的绝缘子检测算法研究
Research on an improved insulator detection algorithm based on convolutional neural network
Received:February 24, 2020  Revised:February 24, 2020
DOI:10.19753/j.issn1001-1390.2022.05.015
中文关键词: 绝缘子  卷积神经网络  Faster R-CNN  锚  NMS  检测
英文关键词: insulator, convolutional neural network, Faster R-CNN, anchor, NMS, detection
基金项目:吉林省科技厅项目(20180201010GX);吉林省教育厅项目(JJKH20180440KJ)
Author NameAffiliationE-mail
Wu Junpeng Northeast Electric Power University, Jilin 132000, Jilin, China 181966366@qq.com 
Tang Shaobo* Northeast Electric Power University, Jilin 132000, Jilin, China t1985193484@163.com 
Li Xianglei Northeast Electric Power University, Jilin 132000, Jilin, China 13298465864@163.com 
Zhang Shi Northeast Electric Power University, Jilin 132000, Jilin, China 784347@qq.com 
Hits: 1529
Download times: 446
中文摘要:
      针对现场中采集的绝缘子图像存在目标图像大小尺度不一,以及拍摄角度所造成的目标图像相互遮挡等因素而导致误检或漏检等问题,提出了一种改进的基于卷积神经网络的绝缘子图像检测方法。采用轻量化的ZF网络实现特征提取;确定优化的锚窗比例提升目标图像的检测精度;对NMS后处理算法进行了改进,提出多阶段的惩罚因子算法,适应于多尺度、多比例、绝缘子重叠遮挡等复杂情况。实验结果表明,改进后的Faster R-CNN的检测方法将AP由0.797 7提高到了0.905 8,显著地提升了绝缘子目标图像的检测精度,降低了绝缘子的漏检和误检的概率。
英文摘要:
      Aiming at the problem of the misdetection or omission caused by the different sizes and scales of target images and the mutual occlusion of target images caused by the shooting angle, an improved detection method of insulator images based on convolutional neural network is proposed in this paper. Firstly, the lightweight ZF network is adopted to achieve feature extraction, and then, the optimized anchor window ratio is determined to improve the detection accuracy of the target image. Finally, the NMS post-processing algorithm is improved, and a multi-stage penalty factor algorithm is proposed, which is suitable for complex situations such as multi-scale, multi-ratio and overlapping insulators. Experimental results show that the improved detection method of Faster R-CNN increases the AP from 0.797 7 to 0.905 8, which significantly improves the detection accuracy of insulator target image, and reduces the probability of insulator omission and misdetection.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd