• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于降噪自动编码器与一维卷积网络的风机故障诊断方法
Fault diagnosis method for wind turbines based on de-noise auto-encoder and one-dimensional convolution network
Received:March 05, 2020  Revised:March 06, 2020
DOI:10.19753/j.issn1001-1390.2023.01.013
中文关键词: 风力发电机  数据驱动故障诊断  一维卷积神经网络  降噪自动编码器  深度置信网络
英文关键词: wind turbines, data-driven fault diagnosis, one-dimensional convolutional network, de-noise auto encoder, deep belief networks
基金项目:广东省自然科学基金项目(2018A030313822)
Author NameAffiliationE-mail
Wang Tingshao South China University of Technology, Guangzhou 510640, China 276002869@qq.com 
Ji Tianyao* South China University of Technology, Guangzhou 510640, China tyji@scut.edu.cn 
Jiang Yuzi South China University of Technology, Guangzhou 510640, China 3 
Wang Jin South China University of Technology, Guangzhou 510640, China 4 
Hits: 1307
Download times: 300
中文摘要:
      针对风力发电机在发生不同故障时相应的传感器数据会发生变化的特点,提出了一种基于自动降噪编码器与一维卷积网络的故障诊断模型。通过构建在时序上能同时识别多个特征的一维卷积层,实现对所有传感器时序数据的特征提取,提取的特征在全连接层的作用下,通过合理设置网络结构与参数,实现对故障的准确识别。同时,针对在复杂生产环境中,传感器的数据会含有噪声的情况,提出了基于自动降噪编码器的降噪方法,通过降噪编码器的降噪作用,将噪声信号重构成原始信号,从而提高在噪声环境下的故障识别效果。仿真算例表明,与基于模型的方法和其他基于数据驱动方法相比,所提出的方法在精度、鲁棒性上都有明显优势。
英文摘要:
      When the wind turbine fails, the sensor data implies the fault features. To mine multiple features from sensor data, a fault diagnosis model of wind turbine based on auto-encoder and one-dimension convolutional neural network (CNN) is proposed in this paper. A one-dimensional convolutional layer is constructed to identify multiple features of time series data, and the features extraction of time-sequence data of all sensors can be realized. Under the action of the full connection layer, faults can be identified accurately by adjusting the network structure and parameters. For sensor data containing noise in complex operation environment, a de-noising method based on auto-encoder is proposed. The de-noising effect of the auto-encoder reconstructs the noise signal into the original signal, which improves the recognition effect of the fault in the noise environment. The simulation results show that the proposed method has obvious advantages in accuracy and robustness compared with the model-based method and other data-driven methods.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd