• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
考虑需求响应不确定性的主动配电网优化调度
Optimal scheduling of active distribution network considering uncertainty of demand response
Received:March 06, 2020  Revised:March 11, 2020
DOI:10.19753/j.issn1001-1390.2023.01.015
中文关键词: 需求响应  不确定性  主动配电网  优化调度
英文关键词: demand response, uncertainty, active distribution network, optimal scheduling
基金项目:上海市科委项目(18DZ1203200);上海绿色能源并网工程技术研究中心(13DZ2251900) ;国网甘肃省电力公司科技项目(SGGSKY00FFJJS1900359)。
Author NameAffiliationE-mail
Ge Xiaolin* School of Electrical Engineering, Shanghai University of Electric Power, Shanghai 200090, China gexiaolin2005@126.com 
Ju Xing School of Electrical Engineering, Shanghai University of Electric Power, Shanghai 200090, China jxsuep@163.com 
Wang Dingmei Electric Power Research Institute of State Grid Gansu Electric Power Company, Lanzhou 730050, China 285752171@qq.com 
Hits: 1185
Download times: 292
中文摘要:
      需求响应的多样性和不确定性给主动配电网的运行带来了很多不利影响,为此从各类需求响应行为的特征出发,构建了考虑需求响应不确定性的主动配电网优化调度模型。针对价格型需求响应,利用消费者心理学原理和价格修正系数来描述经济因素所引起的需求响应不确定性,进而利用不确定参数和范数约束条件来表示非经济因素对需求响应的影响,从而更精细化地刻画了价格型需求响应的不确定性并能够引导用户更好地参与需求响应;针对激励型需求响应,构建了可中断负荷与可激励负荷的融合机制及其相应的机会约束来减小负荷峰谷差;最后以运行成本和多种需求响应成本的综合成本最小为目标,计及多种系统约束和需求响应约束条件,建立了主动配电网优化调度模型,结合算例分析证明了所提模型的优越性。
英文摘要:
      The diversity and uncertainty of demand response bring new challenges to the operation of active distribution network. Therefore, based on the characteristics of various kinds of demand response behavior, an optimal scheduling model of active distribution network which considers uncertainty of demand response is constructed in this paper. Firstly, according to the price-sensitive demand response, the uncertainty of demand response caused by economic factors is described by using the principles of consumer psychology and price correction coefficient. Then, the uncertain parameters and norm constraints are introduced to express the influence of noneconomic factors on demand response, and users can be guided to participate in demand response better. Secondly, for incentive-based demand response, the integrated mechanism of interruptible load and excitable load and the corresponding opportunity constraints are constructed to reduce the peak valley difference; various constraints of system and demand response are taken into consideration and an optimal scheduling model of active distribution network is established which aims to minimize comprehensive cost of operation cost and multiple demand response costs. Example analysis is carried out to verify the effectiveness of the model proposed in this paper.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd