• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于约束型深度强化学习的主动配电网电压控制策略
Volt/Var control strategy for active distribution network based on constrained deep reinforcement learning
Received:March 18, 2020  Revised:April 01, 2020
DOI:10.19753/j.issn1001-1390.2023.05.023
中文关键词: 主动配电网  电压无功控制  深度强化学习  滚动优化  强约束策略
英文关键词: active distribution network(ADN), Volt/Var control, deep reinforcement learning, real-time control, strong constraint strategy
基金项目:深圳科技项目《基于动态控制的配变台区电压治理综合节能优化控制技术研究及应用(090000KK52180112)》;深圳科技项目《城市高密度区域主动配电网电压质量治理关键技术研究及应用(项目编号:090000KK52170133)》
Author NameAffiliationE-mail
Zhang Huaying* Electric Power Research Institute of Shenzhen Power Supply Co., Ltd., Shenzhen 518000,Guangdong, China 1706231465@qq.com 
Ai Jingwen Electric Power Research Institute of Shenzhen Power Supply Co., Ltd., Shenzhen 518000,Guangdong, China 2 
Wang Wei Electric Power Research Institute of Shenzhen Power Supply Co., Ltd., Shenzhen 518000,Guangdong, China 3 
Hits: 1566
Download times: 335
中文摘要:
      随着分布式电源与随机性负荷的大量接入,配电网的电压波动问题变得愈发严重。主动配电网能通过各种电压无功控制器平抑电压波动,但通常需要求解一个复杂的混合整数二阶锥规划问题,难以做到实时控制。文中利用深度强化学习建立了一个主动配电网实时电压控制模型,能快速得到满足潮流约束的控制策略。采集节点有功、节点无功、设备档位、时间步作为环境状态变量;以和网损及设备操作相关的费用作为回报函数来协调三个控制设备;通过基于长短时记忆网络的约束型强化学习来求解,从而建立主动配电网实时电压控制模型。基于4节点测试系统和IEEE-33节点测试系统进行了仿真,仿真结果表明,所提的深度强化学习方法能确保潮流约束,电压控制模型能实时控制电压无功控制器,以保证配电网的电压质量。
英文摘要:
      With the access of distributed power and random load, the problem of voltage fluctuation in distribution network becomes more and more serious. Active distribution network can suppress voltage fluctuation through various voltage and reactive power controllers, but it is usually necessary to solve a complex mixed integer second-order cone programming problem, which is difficult to achieve real-time control. In this paper, a real-time voltage control model of active distribution network is established by using deep reinforcement learning, which can quickly get the control strategy satisfying the power flow constraints. It collects node active power, node reactive power, transformer voltage regulating gear and time step as environmental state variables. It coordinates the three control equipments with the cost related to network loss and equipment operation as return function. It solves the problem through constraint-based reinforcement learning based on long short-term memory network, so as to establish a real-time voltage control model of active distribution network. Based on the 4-node test system and IEEE 33-node test system, the simulation results show that the proposed deep reinforcement learning method can ensure the power flow constraints, and the voltage control model can control the voltage and reactive power controller in real time to ensure the voltage quality of the distribution network.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd