• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
回溯搜索算法改进RBF算法的锂离子电池SOC估算研究
Research on Lithium-ion Battery SOC Estimation Based on Retrospective Search Algorithm and Improved RBF Algorithm
Received:April 10, 2020  Revised:April 10, 2020
DOI:10.19753/j.issn1001-1390.2020.18.024
中文关键词: SOC估算  RBF算法  回溯搜索算法  目标权值
英文关键词: SOC  estimation, RBF  algorithm, backtracking  search algorithm, target  weight
基金项目:国家自然科学基金资助项目(51777127)
Author NameAffiliationE-mail
Zhang Xiaohui* State Grid Liaoning Province Electric Power Co,Ltd Tieling Power Supply Company 1297362526@qq.com 
Xu Aoran School of Electric Power,Shenyang Institute of Technology 2417188542@qq.com 
Wang Xiuping School of Electric Power,Shenyang Institute of Technology 2417188523@qq.com 
Hits: 1133
Download times: 370
中文摘要:
      随着电动汽车的发展和应用,动力电池SOC估算的意义越来越重要,为了提高SOC估算的精度,本文在标准RBF网络模型的基础上提出了利用回溯搜索算法改进RBF神经网络模型。通过对锂电池模型中的目标函数进行优化求解,利用寻找最佳的目标权值和阈值提高RBF网络模型的SOC估算精度。最后搭建了实验仿真平台,对改进前后的算法SOC估算进行了仿真对比分析,实验结果证明了改进后RBF网络比标准RBF网络算法SOC估算精度更高,并把估算误差降低到2%以内,对锂离子电池有较好的估算精度,具有一定的理论研究意义。
英文摘要:
      With the development and application of electric vehicles, the significance of power battery SOC estimation is becoming more and more important. In order to improve the accuracy of SOC estimation, this paper proposes to use the backtracking search algorithm to improve the RBF neural network model based on the standard RBF network model. By optimizing and solving the objective function in the lithium battery model, the SOC estimation accuracy of the RBF network model is improved by finding the best objective weights and thresholds. Finally, an experimental simulation platform was built to compare and analyze the algorithm SOC estimation before and after the improvement. The experimental results prove that the improved RBF network has higher SOC estimation accuracy than the standard RBF network algorithm, and reduces the estimation error to less than 2%. Lithium-ion batteries have good estimation accuracy and have certain theoretical research significance.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd