• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于XGBoost算法的智能电网信息攻击识别模型
Network attack identification model of smart grid based on XGBoost algorithm
Received:May 20, 2020  Revised:June 08, 2020
DOI:10.19753/j.issn1001-1390.2023.01.010
中文关键词: 智能电网  信息攻击识别  XGBoost算法  特征选择  过采样
英文关键词: smart grid, network attack identification, XGBoost algorithm, feature selection, oversample
基金项目:广西壮族自治区重点研发计划;广西电网科技项目
Author NameAffiliationE-mail
Wu Rongrong* Electric Power Research Institute of Guangxi Power Grid Co., Ltd., Nanning 530023, China wu_rr@126.com 
Li Xin Electric Power Research Institute of Guangxi Power Grid Co., Ltd., Nanning 530023, China li_x.sy@gx.csg.cn 
Bin Dongmei Electric Power Research Institute of Guangxi Power Grid Co., Ltd., Nanning 530023, China bin_dm.sy@gx.csg.cn 
Hits: 871
Download times: 290
中文摘要:
      智能电网在遭受信息攻击后,如何根据量测数据的变化规律,准确识别电力系统遭受的攻击类型是提高电网安全防御的有效手段,提出一种基于Extreme Gradient Boosting (XGBoost)算法的智能电网信息攻击识别模型。基于kmeans-smote设计电力数据过采样方法,对量测数据进行平衡处理,解决攻击事件样本的不平衡问题。提出最大相关-最小冗余(MRMR)特征选择方法,提取信息攻击事件最优表征特征子集,降低数据维度并提升信息攻击的识别效率。设计XGBoost分类器,对3种攻击状态和正常状态进行分类识别,采用准确率、召回率等指标评估模型的识别性能。经仿真实验验证,所提出的信息攻击识别模型显著提升了智能电网信息攻击的识别精度,且具有较好的泛化性。
英文摘要:
      After the smart grid suffers from information attacks, how to accurately identify the attack type of the power system according to the change law of the measured data is an effective means to improve the security defense of the power grid. Aiming at the above problems, this paper proposes a smart grid network attack identification model based on extreme gradient boosting (XGBoost) algorithm. The power data oversampling method is designed based on Kmeans-smote to balance the measured data and solve the imbalanced problem of attack event samples. Then, based on the feature selection method of maximum correlation and minimum redundancy (MRMR), the optimal feature subset of information attack events is extracted to reduce the data dimension and improve the recognition efficiency of information attack. Finally, XGBoost classifier is designed to classify and recognize three kinds of attack states and normal states, and the identification performance of the model is evaluated by accuracy and recall rate. The experimental results prove that the network attack identification model improves the detection accuracy of smart grid information attacks significantly, which has good generalization.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd