• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于IBBDE算法的交直流混联系统无功优化
Reactive power optimization of hybrid AC-DC system based on improved bare-bones differential evolution algorithm
Received:June 04, 2020  Revised:June 04, 2020
DOI:10.19753/j.issn1001-1390.2021.05.011
中文关键词: 高压直流输电  无功优化  交直流混联系统  骨干差分进化算法  广义反向学习
英文关键词: HVDC, reactive power optimization, hybrid AC-DC system, bare-bones differential evolution algorithm, generalized opposition based learning
基金项目:西藏自治区教育厅高校重点实验室支持项目(2019DQ-ZN-02)。
Author NameAffiliationE-mail
Zhang Tao 1. School of Electrical Engineering, Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, Tibet, China. 2. School of Energy and Electrical Engineering, Hohai University, Nanjing 210098, China 1360462946@qq.com 
Zhu Ruijin* School of Electrical Engineering, Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, Tibet, China 280536094@qq.com 
Zhaxi Dunzhu School of Electrical Engineering, Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, Tibet, China sushe11203@126.com 
Hits: 2034
Download times: 506
中文摘要:
      随着高压直流输电工程(HVDC)投产规模持续增长,交直流混联电网的格局初步形成,给传统电网无功优化带来挑战。文中提出一种改进骨干差分进化算法(Improved Bare-bones Differential Evolution,IBBDE)求解交直流混联系统无功优化问题。在骨干差分进化算法的基础上,IBBDE算法采用广义反向学习初始化种群和自适应调整交叉概率的改进措施以提升种群的全局寻优能力。以含HVDC的IEEE 30节点系统为算例进行分析,结果表明,与差分进化算法和骨干差分进化算法相比,所提IBBDE算法可获得更优的无功优化效果,且寻优稳定性更好。
英文摘要:
      With the increasing growth of HVDC transmission projects, preliminary formation of AC-DC hybrid power grid brings new challenges to reactive power optimization of traditional power grid. Aiming at this problem, an improved bare-bones differential evolution algorithm (IBBDE) is proposed to solve the reactive power optimization of hybrid AC-DC system. Initialization of population using generalized opposition based learning and self-adaption of crossover factor are introduced to enhance the global convergence of algorithm. The IBBDE algorithm is tested on IEEE 30-bus system with HVDC, the simulation results show that, comparing with DE and BBDE algorithm, the proposed IBBDE algorithm can achieve better reactive power optimization effect and has superiority on optimization stability.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd