• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于模糊聚类的异常用电行为识别研究
Fuzzy clustering based abnormal power consumption behavior detection on resident level
Received:June 17, 2020  Revised:July 03, 2020
DOI:10.19753/j.issn1001-1390.2020.19.007
中文关键词: 异常用电  模糊聚类  智能电表  电力数据
英文关键词: abnormal power consumption, fuzzy clustering, smart meter, power data
基金项目:
Author NameAffiliationE-mail
Zheng Sida* State Grid Jibei Electric Power Co., Ltd., Electric Power Research Institute sida.epri@outlook.com 
Liang Qilin Langfang Power Supply Company, State Grid Jibei Electric Power Co., Ltd. 502726461@qq.com 
Peng Xinxia State Grid Jibei Electric Power Co., Ltd., Electric Power Research Institute 1479905580@qq.com 
Zhang Wei State Grid Jibei Electric Power Co., Ltd., Electric Power Research Institute zhang.wei.1@jibei.sgcc.com.cn 
Wang Hao State Grid Jibei Electric Power Co., Ltd., Electric Power Research Institute wanghao513@sohu.com 
Hits: 1783
Download times: 509
中文摘要:
      窃电等异常用电行为的识别是用电检查的重点和难点。由于数据采集问题,以往研究大多专注于大客户窃电行为方面,对居民窃电行为的研究相对较为薄弱。针对小用户级别的窃电等窃电监测问题,提出一种基于聚类的异常用电行为识别方法。该方案首先从智能电表收集的数据中提取用电特征,然后使用模糊聚类分析数据结构,提取出正常用户的行为特征。在真实数据集上的实验结果表明了该方法的有效性。
英文摘要:
      Detection of abnormal power consumption behavior including energy theft is an important and difficult part of electricity inspection. Due to data aggregation problems, previous studies have mostly focused on electricity stealing behaviors of large customers, and research on residents'' electricity stealing behaviors is relatively weak. This article extracts electricity characteristics from data collected by smart meters, and then uses fuzzy clustering to analyze the data structure to extract behavior characteristics of normal users. Experimental results on real-world dataset show the applicability of the proposed method.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd