• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于深度学习的智能录波器配置数据自动化映射方法
Automatic Mapping Method of Intelligent Recorder Configuration Datasets based on Deep Learning
Received:June 20, 2020  Revised:June 20, 2020
DOI:10.19753/j.issn1001-1390.2002.09.011
中文关键词: 智能变电站  文本挖掘  全站配置描述文件  智能二次设备  动态卷积神经网络
英文关键词: intelligent substation  text mining  Substation Configuration Description  Intelligent Electronic Device  Dynamic Convolutional Neural Network
基金项目:
Author NameAffiliationE-mail
LI Tiecheng State Grid Hebei Electrical Power Company Research Institute 473951841@qq.com 
6 6 6@qq.com 
3 3 3@qq.com 
4 4 4@qq.com 
5 5 5@qq.com 
ZHOU Daming* School of Electrical and Electronic Engineering, Huazhong University of Science DdDd Technology 2941894638@qq.com 
Hits: 1984
Download times: 381
中文摘要:
      智能变电站配置描述文件中包含大量智能二次设备数据输出接口地址的配置数据集,将这些数据集映射至智能录波器各信息组是保证录波器精准采集设备运行数据的基础性步骤,当前主流映射方法是依照输出接口描述文本人工映射对应的配置数据,二次设备数目繁多时映射工作量大,而描述文本一定程度的不规范性给数据集自动化映射提出了难题。针对这一问题,本文提出了基于深度学习框架—动态卷积神经网络构造的智能录波器配置数据的自动化映射方法;首先利用文本表征模型word2vec对数据集描述文本的稀疏文本向量进行词组语义及关联关系的表征;随后构造动态卷积神经网络并输入文本向量,基于其多层次抽象化学习典型样本特征的特点进行语义规律挖掘与文本分类映射,据此结果实现接口地址配置数据的自动化映射。实际算例表明,基于动态卷积神经网络模型的文本分类方法语义分析能力强,分类精度高,有效提升了智能录波器配置数据自动化映射的准确率。
英文摘要:
      The Substation Configuration Description (SCD) file of an intelligent substation contains a large number of Intelligent Electronic Devices (IEDs) configuration datasets of the output interface address. Mapping these datasets to the intelligent recorder is a basic step for the recorder to accurately collect IEDs’ operation information. The current mainstream mapping method is to map the corresponding configuration data manually according to the output interface description text. When the number of IEDs is extremely big, the configuration workload is large either, and since the text descriptions have a certain degree of irregularity, it also poses a problem for the automatic mapping of the datasets. Aiming at this problem, this paper proposes the automatic mapping technology of IEDs configuration datasets based on a deep learning framework—Dynamic Convolutional Neural Network (DCNN) model. Firstly, it uses the text representation model word2vec to represent the sparse text vectors of configuration datasets text descriptions as well as their phrase semantics and association relationships. Then text vectors will be imported in DCNN, which, based on its multilayer abstract learning characteristics of typical sample features, can perform semantic law mining and automatic mapping. The configuration datasets of intelligent recorder will be mapped automatically based on the text mapping result. The Practical example shows that the text classification method based on DCNN model has strong semantic analysis ability and high classification accuracy, which effectively improves the accuracy of automatic mapping of intelligent recorder configuration data.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd