• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于CEEMD-GRU模型的短期电力负荷预测方法
Short-term load forecasting method based on complementary ensemble empirical mode decomposition and gated recurrent unit neural network
Received:June 22, 2020  Revised:June 28, 2020
DOI:10.19753/j.issn1001-1390.2023.01.003
中文关键词: 互补集合经验模态分解  短期电力负荷预测  经验模态分解  门控循环单元神经网络
英文关键词: complementary ensemble empirical mode decomposition, short-term load forecasting, empirical mode decomposition, gated recurrent unit neural network
基金项目:中国博士后面上基金资项目(20110491358); 江苏大学高级人才研究项目(13DG054)。
Author NameAffiliationE-mail
Zhu Wei* School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 321100, Jiangsu, China 366165822@qq.com 
Sun Yunquan School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 321100, Jiangsu, China 366165822@qq.com 
Qian Yao School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 321100, Jiangsu, China 366165822@qq.com 
Jin Hao School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 321100, Jiangsu, China 366165822@qq.com 
Yang Haijing School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 321100, Jiangsu, China 366165822@qq.com 
Hits: 1597
Download times: 335
中文摘要:
      针对电力负荷序列不平稳、随机性强,直接输入模型会导致拟合效果差、预测精度低等问题,提出了一种基于添加互补白噪声的互补集合经验模态分解(Complementary Ensemble Empirical Mode Decomposition, CEEMD)以及门控循环单元神经网络(Gated Recurrent Unit Neural Network, GRU)融合的预测方法。针对传统经验模态分解(Empirical Mode Decomposition, EMD)方法处理干扰信号大的序列时,存在的模态混叠问题,提出了CEEMD方法,加入互补白噪声,将原始序列分解成不同尺度的子序列输入GRU神经网络,并优化网络参数,最终获得预测结果。通过实验证明,该方法重构误差小,预测效果好。
英文摘要:
      Aiming at the problem of unstable power load sequence, strong randomness, poor fitting effect and low prediction accuracy caused by direct input model, a fusion forecasting method of ensemble empirical mode decomposition (CEEMD) adding sets of complementary white noise and gated recurrent unit neural network (GRU) is proposed in this paper. For the empirical mode decomposition (EMD) to deal with the sequence of large interference signals, there is a modal aliasing problem, the method of CEEMD is proposed; and then, adding complementary white noise, decomposing the original sequence into sub-sequences of different scales and inputting GRU neural network, optimizing the network super parameters, and finally, the predicted results are obtained. The experiment results show that the reconstruction error is small and the prediction effect is good.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd