• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于改进集成经验模态分解和高斯过程回归的锂离子电池剩余容量及寿命预测方法
Capacity and remaining useful life prediction of lithium-ion battery based on MEEMD and GPR
Received:July 05, 2020  Revised:September 28, 2020
DOI:10.19753/j.issn1001-1390.2023.09.005
中文关键词: 锂离子电池  容量及剩余寿命  改进的集成经验模态分解  高斯过程回归  贝叶斯优化
英文关键词: lithium-ion battery, capacity and remaining useful life, modified ensemble empirical mode decomposition (MEEMD), gaussian process regression (GPR), Bayesian optimization
基金项目:国家自然科学基金(51977153、51977161、51577046),国家自然科学基金重点项目(51637004),国家重点研发计划“重大科学仪器设备开发”项目( 2016YFF0102200),装备预先研究重点项目(41402040301)
Author NameAffiliationE-mail
Xiang Ming* School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China ming.xiang@whu.edu.cn 
He Yigang School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China yghe1221@whu.edu.cn 
Zhang Hui School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China hzhang@whu.edu.cn 
Hits: 1296
Download times: 302
中文摘要:
      锂离子电池在储能电站中为消纳可再生能源作出了重要贡献,其运行的稳定性和可靠性受到了研究人员的持续关注。为了解决锂离子电池容量及剩余寿命的预测和抑制测量过程中因各种外界因素引起的噪声,提出了一种基于改进的集成经验模态分解MEEMD(Modified Ensemble Empirical Mode Decomposition)去噪和经贝叶斯优化的高斯过程回归BO-GPR(Gaussian process regression optimized by Bayesian optimization algorithm)的锂离子电池容量及剩余寿命预测方法。利用MEEMD方法识别并去除原始测量数据中的噪声分量。利用BO-GPR方法预测锂离子电池容量及剩余寿命,其中贝叶斯优化方法对高斯过程回归的部分超参数进行了进一步寻优。文章基于美国国家航空航天局研究中心提供的锂离子电池测量数据进行了预测实验,结果表明,该方法能够有效去除噪声信号,选取的协方差函数和超参数组合达成的预测效果优于初始GPR模型,证明了其有效性。
英文摘要:
      Lithium-ion battery, whose operational robustness and reliability have increasingly drawn attention of researchers, plays a crucial role in consuming renewable energies for energy storage power station. Consequently, a prediction approach, based on modified ensemble empirical mode decomposition (MEEMD) and gaussian process regression optimized by Bayesian algorithm (BO-GPR), is presented in the hope of prognosticating the capacity and remaining useful life (RUL) of battery and suppressing the noise invited by some external causes. Firstly, MEEMD is employed to recognize and filter the noise components in the raw measured data. Then, BO-GPR predicts the capacity and RUL of lithium-ion battery, where the Bayesian optimization method further searches for the optimal values of some hyperparameter. Based on the measured dataset of lithium-ion battery capacity provided by NASA Research Center, the prediction result is conducted. The results show that the proposed method could effectively erase noise signals, and the forecast results founded on the chosen covariance function and hyperparameters are better than those of the original GPR model, which verifies its superiority.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd