• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于改进长短期记忆神经网络的短期负荷预测
Short-term Load Forecasting Based on Improved Long Short-term Memory Neural Network
Received:August 04, 2020  Revised:August 19, 2020
DOI:10.19753/j.issn1001-1390.2020.19.015
中文关键词: 负荷预测  小波变换  LSTM神经网络  WT-LSTM方法
英文关键词: load forecasting  wavelet transform  LSTM neural network  WT-LSTM
基金项目:国家自然科学基金(51607057)、中央高校基本科研业务费项目(2019B22514)。
Author NameAffiliationE-mail
WEI Hua-dong Shandong Electric Power Engineering Consulting Institute Corp,Ltd,Jinan weihd@163.com 
TAO Yuan College of The IOT Engineering,Hohai University,Changzhou taoy@163.com 
CAI Chang-chun* College of The IOT Engineering,Hohai University,Changzhou fload_cai@163.com 
HU Gang College of The IOT Engineering,Hohai University,Changzhou hug@hhu.edu.cn 
Hits: 1430
Download times: 489
中文摘要:
      精确的负荷预测是电力系统规划、设计的有力支撑,是电网安全经济运行提供重要保障。实际应用中,存在由于数据采集设备故障、系统突发事件导致相关数据资料不准确从而影响短期负荷预测结果的情况。本文提出基于小波变换的长短期记忆神经网络负荷短期负荷方法WT-LSTM(wavelet transform -long short-term memory),利用小波变换的时频特性对负荷数据的伸缩变换进行细化,实现高频系数量化处理;结合长短期记忆神经网络的梯度计算,提高负荷预测的准确性和可靠性。通过变电站负荷数据以及区域办公楼实验,仿真结果表明本文方法能够有效处理负荷原始数据中的噪声,从而提高负荷预测精度和鲁棒性。
英文摘要:
      Accurate load forecasting is a powerful support for power system planning and design, and an important guarantee for the safe and economic operation of the power grid. In practical application, there are some problems, such as data acquisition equipment failure and system emergency, which lead to inaccurate data and affect the short-term load forecasting results. In this paper, WT-LSTM (wavelet transform long short term memory) is proposed, which uses the time-frequency characteristics of wavelet transform to refine the scaling transformation of load data and realize the quantification of high-frequency coefficients. The gradient calculation of long short term memory neural network is combined to improve the accuracy and reliability of load forecasting. Through the substation load data and regional office building experiments, the simulation results show that this method can effectively deal with the noise in the original load data, so as to improve the accuracy and robustness of load forecasting.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd