• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
一种改进的压板状态识别SSD算法
An improved SSD algorithm for pressure platestatus recognition
Received:August 04, 2020  Revised:August 12, 2020
DOI:10.19753/j.issn.1001-1390.2021.01.010
中文关键词: 压板状态识别  SSD算法  注意力机制  样本扩充  迁移学习
英文关键词: pressure plate state recognition  SSD algorithm  attention mechanism  sample expan- sion  migration learning
基金项目:国家自然科学基金项目( 61861007),贵州省科技支撑计划(黔科合支撑[2018]2151)
Author NameAffiliationE-mail
Zhou ke School of Electrical Engineering, Guizhou University kzhou@gzu.edu.cn 
Yang Qianwen* School of Electrical Engineering, Guizhou University 2583494073@qq.com 
Wang Yaoyi School of Electrical Engineering, Guizhou University 1500627446@qq.com 
Zhang Jinqian School of Electrical Engineering, Guizhou University 928683496@qq.com 
Hits: 1495
Download times: 505
中文摘要:
      在变电站二次侧管理中,压板承担着重要作用。文章提出了一种改进SSD图像识别算法,用以实现对压板状态的识别。新算法通过在SSD目标识别算法中,嵌入注意力机制,利用注意力机制挖掘了每个特征通道的重要程度,提升有用特征的权重,抑制了无效特征,提升了原有算法的检测精度。为了解决训练样本不足的问题,新算法通过对样本的扩充和迁移学习的方式,训练得到了提出的新SSD算法中的各个参数,并通过仿真实验进行验证。实验结果表明,改进后的SSD算法,其识别准确率达到96%,召回率达到94%,每秒可以检测23张图片,能够有效提升变电站内压板状态识别的效率。
英文摘要:
      In the secondary side management of the substation, the pressure plate plays a major role. The article proposes an improved SSD image recognition algorithm to realize the recognition of the state of the platen. The new algorithm embeds the attention mechanism in the SSD target recognition algorithm, uses the attention mechanism to mine the importance of each feature channel, increases the weight of useful features, suppresses invalid features, and improves the detection accuracy of the original algorithm. In order to solve the problem of insufficient training samples, the new algorithm trains the parameters of the proposed new SSD algorithm by means of sample expansion and migration learning, and is verified by simulation experiments. Experimental results show that the improved SSD algorithm has a recognition accuracy rate of 96%, a recall rate of 94%, and 23 images per second can be detected, which can effectively improve the efficiency of the pressure plate status in the substation.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd