• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于TCA-CNN-LSTM的短期负荷预测研究
Research on Short-term Load Forecasting Based on TCA-CNN-LSTM
Received:August 20, 2020  Revised:September 08, 2020
DOI:10.19753/j.issn1001-1390.2023.08.013
中文关键词: 短期电力负荷  卷积神经网络  长短期记忆网络  注意力机制
英文关键词: Short-Term Power Load  Convolutional Neural Network  Long Short Term Memory  Attention Mechanism
基金项目:国家自然科学基金资助项目(51567005); 贵州省科技计划项目([2018]5615)
Author NameAffiliationE-mail
Lin Han School of Electrical Engineering, Guizhou University 940675723@qq.com 
Hao ZhengHang* School of Electrical Engineering, Guizhou University 983135026@qq.com 
Guo Jiapeng School of Electrical Engineering, Guizhou University 491207232@qq.com 
Wu Yudong School of Electrical Engineering, Guizhou University 857205640@qq.com 
Hits: 982
Download times: 302
中文摘要:
      为有效地挖掘历史数据信息,提高短期负荷预测准确性,文章针对电力负荷时序性和非线性的特点,在原有一维卷积神经网络(Convolutional Neural Network, CNN)-长短期记忆网络(long short term memory,LSTM)模型的基础上,分别在CNN和LSTM侧嵌入通道注意力机制(Channel Attention,CA)和时序注意力机制(Temporal Attention,TA),构建CA-CNN和TA-LSTM模块,然后结合CA-CNN和TA-LSTM模块构建TCA-CNN-LSTM的层级注意力机制短期负荷预测模型。同时,为提高训练数据的质量并加快模型训练速度,运用K-means和决策树模型选取相似日数据, 构建基于相似日数据的向量特征时序图,最后将时序图输入TCA-CNN-LSTM负荷预测模型完成预测。以澳大利亚某地真实数据集和2016电工杯数学建模竞赛电力负荷数据为算例,分别应用TCA-CNN-LSTM模型与支持向量机、多层感知机(Multilayer perceptron, MLP)、LSTM、CNN-LSTM和CNN-Attention-LSTM模型的预测结果进行对比,实验结果表明所提方法具有更高的预测精度。
英文摘要:
      In order to accurately mine historical data information and improve the accuracy of short-term load forecasting. the article focuses on the time series and nonlinear characteristics of the power load, based on the original one-dimensional convolutional neural net-work(CNN)-long short term memory network(LSTM) model, channel attention(CA) and temporal attention mechanism(TA) were added to the CNN and LSTM respectively, combining CA-CNN and TA-LSTM modules, we construct the TCA-CNN-LSTM hierar-chical attention mechanism short-term load forecasting model. At the same time, In order to improve the quality of training data and speed up model training, K-means and decision tree model are used to extract similar days. construct a vector feature time series dia-gram based on similar day data, and finally input the time series diagram into TCA-CNN-LSTM load forecasting to complete the pre-diction. Taking the real data set of a certain place in Australia and the power load data of the 2016 Electrician Cup Mathematical Model-ing Competition as examples, the TCA-CNN-LSTM model is applied to compare with the prediction results of support vector ma-chine(SVM), Multilayer perceptron(MLP), LSTM, CNN-LSTM and CNN-Attention-LSTM models, respectively. The experimental results show that the proposed method has higher prediction accuracy.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd