• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于优化神经网络的采集终端软件可靠性预测
Reliability prediction of acquisition terminal software based on optimization neural network
Received:August 20, 2020  Revised:August 20, 2020
DOI:10.19753/j.issn1001-1390.2023.11.024
中文关键词: SAGFA  BP神经网络  采集终端  软件可靠性  预测模型
英文关键词: simulated annealing genetic fusion algorithm, BP neural network, acquisition terminal, reliability of software, predictive model
基金项目:
Author NameAffiliationE-mail
DONG Yongle* Inner Mongolia Power Research Institute 15335577499@126.com 
MAO Yongmei Inner Mongolia Power Research Institute 1158009660@qq.com 
ZHANG Lifang Inner Mongolia Power Research Institute zhanglifang304@163.com 
ZHANG Fan Inner Mongolia Power Research Institute zdafan@163.com 
BAI Luwei Inner Mongolia Power Research Institute 397805671@qq.com 
LIN Haijun Harbin University of Science and Technology lhjhlg@126.com 
LIANG Zhaocong Harbin University of Science and Technology liang_zhaocong@163.com 
Hits: 821
Download times: 272
中文摘要:
      采集终端软件的可靠性是评价软件系统生命周期的一个重要指标。针对多种神经网络和支持向量机等方法在软件系统可靠性评价中存在的参数优化困难、软件系统预测模型的低准确率问题,提出基于SAGFA-BPNN的建模方法。该方法采用PCA对实验数据降维处理,剔除影响模型准确率的冗余和干扰样本;在优化SA和GA的基础上,给出退火遗传融合优化算法(SAGFA),并发挥其全局寻优能力,以及BPNN非线性映射能力,提出SAGFA-BPNN网络,及基于它的建模方法,以提高训练速度、全局寻优能力及准确度。文章还应用该方法对采集终端软件的可靠性进行了预测,预测结果表明,该方法可以有效地提高模型的准确度。
英文摘要:
      The reliability of acquisition terminal software is an essential criterion for the life span of software system. In view of the difficulties of parameter optimization and low accuracy of software system predictive model existing in multi-neural network (NN) method and SVP method in reliability evaluation of software system, method of building model based on simulated annealing genetic fusion algorithm (SAGFA)-BPNN is proposed in this paper. Firstly, PCA is used to reduce the dimension of the experimental data, this is to eliminate the redundancy and interference sample that will affect the accuracy of model. Then, SAGFA is developed based on the optimization of SA and GA method. Furthermore, by utilizing the global optimization property of SAGFA method and the non-linear mapping property of BPNN, the SAGFA-BPNN and the method of its model building are given. This will raise the training speed, improve the ability of global optimization and increase the accuracy of prediction. This method is then applied to predict the reliability of acquisition terminal software and the prediction result shows that the proposed method can effectively raise the accuracy of model..
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd