• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于LMD边际谱能量熵与FWA-SVM的变压器绕组松动诊断
Diagnosis for transformer winding Looseness based on LMD marginal spectrum energy entropy and FWA-SVM
Received:August 22, 2020  Revised:August 22, 2020
DOI:10.19753/j.issn1001-1390.2021.11.010
中文关键词: 变压器  空载合闸  局部均值分解  边际谱能量熵  支持向量机
英文关键词: transformer, no-load switching on, LMD, spectrum energy entropy, SVM
基金项目:基金项目:国家自然科学基金资助项目(51577050);国网江苏省电力公司重点科技项目(J2020042)
Author NameAffiliationE-mail
yanjin* Hohai University 804302585@qq.com 
mahongzhong Hohai University hhumhz@163.com 
zhuhao Hohai University qq804302585@163.com 
zhangyong Hohai University 2654068649@qq.com 
liyong Hohai University 45362540@qq.com 
xuhonghua Hohai University hhonghuawl@126.com 
Hits: 1117
Download times: 344
中文摘要:
      变压器空载合闸的振动信号包含了丰富的机械特征信息,为了实现对变压器绕组松动故障诊断,提出了一种局部均值分解(LMD)边际谱能量熵与烟花算法优化支持向量机(FWA-SVM)的方法。通过LMD提取若干反映变压器合闸过程绕组状态信息的乘积函数(product function,PF)分量;依据各PF分量相关系数与能量分布,将前6阶PF分量进行希尔伯特变换,并求取对变压器绕组状态变化敏感的边际谱能量熵作为特征向量;将特征向量输入到烟花算法(FWA)优化的支持向量机(SVM)分类器,实现变压器绕组轻微松动故障早期预警。实验结果表明:基于LMD边际谱能量熵能准确反映故障特征,FWA-SVM诊断方法在少量样本情况下仍有较高的故障辨识度。
英文摘要:
      Aiming at the vibration signals are nonlinear and time-varying since the no-load closing of a transformer, a fault feature extraction method that combines local mean decomposition(LMD)and Hilbert marginal spectrum energy entropy is proposed. Several product function(PF) components that reflect the mechanical state information of operating process are extracted by LMD. The top 6th order components that are selected based on the energy distribution and correlation coefficients, are transformed by Hilbert transform, and their marginal spectrum energy entropy are calculated as the feature quantities. The Fire?Works Algorithm(FWA)is used to optimize the support vector machine classifier to identify the different states of transformer winding. The experimental results show that the features based on LMD-Hilbert marginal spectrum energy entropy extraction can accurately reflect the fault characteristics,and the FWA-SVM diagnosis method has a good effect on in the case of a small number of samples.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd