• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于变分模态分解和深度学习的短期电力负荷预测模型
Short-term load forecasting model based on VMD and LSTM
Received:September 06, 2020  Revised:September 06, 2020
DOI:10.19753/j.issn1001-1390.2023.02.018
中文关键词: 短期负荷预测  变分模态分解  本征模态函数  长短期记忆神经网络
英文关键词: short-term load forecasting, variational mode decomposition, intrinsic mode functions, long short term memory neural network
基金项目:广东电网有限责任公司广州供电局生产技改类项目(080016GS62190031)
Author NameAffiliationE-mail
Yang Zeng* Guangdong power grid co,ltd Guangzhou power supply bureau power dispatching control center yangzeng1@126.com 
Ding Shiyi Guangdong power grid co,ltd Guangzhou power supply bureau power dispatching control center yangzeng1@126.com 
Ye Meng Guangdong power grid co,ltd Guangzhou power supply bureau power dispatching control center yangzeng1@126.com 
Li Jing Guangdong power grid co,ltd Guangzhou power supply bureau power dispatching control center yangzeng1@126.com 
Xue Shuqian Beijing Qingruan Innovation Technology Co., Ltd. yangzeng1@126.com 
Wu Haotian North China Electric Power University yangzeng1@126.com 
Hits: 2357
Download times: 854
中文摘要:
      提升负荷预测的准确性对于指导电力系统的生产计划、经济调度以及稳定运行至关重要。提出一种基于变分模态分解(Variational Mode Decomposition, VMD)和长短期记忆(Long Short Term Memory, LSTM)神经网络的短期负荷预测模型。利用VMD算法将负荷序列分解成不同的本征模态函数(Intrinsic Mode Functions, IMF),每个IMF结合LSTM进行预测,将各部分预测结果叠加得到VMD-LSTM模型的预测结果。分析实验结果,相比单一LSTM和经验模态分解(Empirical Mode Decomposition, EMD)组合LSTM预测方法,该方法能有效的提升负荷预测的准确性。
英文摘要:
      Improving the accuracy of load forecasting is very important to guide the production planning, economic dispatch and stable operation of power system. A short-term load forecasting model based on variational mode decomposition (VMD) and long short term memory (LSTM) neural network is proposed in this paper. VMD algorithm is used to decompose load series into different intrinsic mode functions (IMF), and each IMF is combined with LSTM network for prediction. The prediction results of VMD-LSTM model are obtained by superimposing the prediction results of each part. The analysis of experimental simulation shows that compared with the single LSTM and empirical mode decomposition (EMD) combined LSTM prediction method, the proposed method can effectively improve the prediction accuracy.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd