• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于边缘计算的智能电能表能耗与寿命优化方法
Energy consumption and life optimization method of smart meter based on edge computing
Received:November 03, 2020  Revised:November 16, 2020
DOI:10.19753/j.issn1001-1390.2023.05.025
中文关键词: 智能电能表  边缘计算  CNN  K-means聚类算法
英文关键词: smart meter, edge computing, CNN, K-means clustering algorithm
基金项目:国家自然科学基金资助项目(51767006);江西省自然科学基金重点项目(20202ACBL214021);江西省重点研发计划资助项目(20202BBGL73098);江西省教育厅科学技术项目(GJJ190311)
Author NameAffiliationE-mail
Liu Linqing Marketing Service Center, State Grid Hebei Electric Power Co., Ltd., Shijiazhuang 050022, China 2050468658@qq.com 
Ma Hongming Marketing Service Center, State Grid Hebei Electric Power Co., Ltd., Shijiazhuang 050022, China 417320193@qq.com 
Li Peng State Grid Hebei Electric Power Co., Ltd., Shijiazhuang 050022, China gw123456pp@163.com 
Duan Zihe Marketing Service Center, State Grid Hebei Electric Power Co., Ltd., Shijiazhuang 050022, China gw123456pp@163.com 
Li Mengyu Marketing Service Center, State Grid Hebei Electric Power Co., Ltd., Shijiazhuang 050022, China 704094294@qq.com 
Deng Fangming* School of Electrical and Automation Engineering, East China Jiaotong University, Nanchang 330013, China 550521691@qq.com 
Hits: 1161
Download times: 276
中文摘要:
      针对智能电能表在大规模使用后出现的寿命异常缩短,能耗异常增高问题。提出了一种基于边缘计算的智能电能表能耗与寿命优化方案。使用边缘服务器接收和上传智能电能表数据,在边缘端通过卷积神经网络(CNN)提取能耗与寿命的影响因子,采用K-means聚类算法预测用电量变化从而得到能耗与寿命优化模型。仿真结果表明,在基于边缘计算的能耗与寿命优化环境中,优化的1000个智能电能表的使用寿命提高了30%,总能耗降低了26%。为智能电能表长期稳定工作提供了一种研究方法。
英文摘要:
      Aiming at the problems of abnormal life shortening and energy consumption increasing of smart meters after large-scale use, this paper presents an energy consumption and life optimization scheme of smart meters based on edge computing. The edge server is used to receive and upload the data of smart meters, and the influence factors of energy consumption and life are extracted by convolutional neural network (CNN) at the edge end, and K-means clustering algorithm is used to predict the change of power consumption, so as to obtain the energy consumption and life optimization model. The simulation results show that the service life of 1000 smart meters is increased by 73%, and the total energy consumption is reduced by 26% in the energy consumption and life optimization environment based on edge computing, which provides a research method for long-term stable operation of smart meters.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd