• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于整体退火遗传小波网络的计量终端可靠性预测
Reliability prediction of metering terminal based on whole annealing genetic algorithm wavelet neural network
Received:November 05, 2020  Revised:November 11, 2020
DOI:10.19753/j.issn1001-1390.2024.02.026
中文关键词: 整体退火遗传算法  小波神经网络  计量终端  软件可靠性  预测模型
英文关键词: whole annealing genetic algorithm, wavelet neural network, metering terminal, reliability of software, predictive model
基金项目:国家自然科学基金资助项目( 项目编号:61803128)
Author NameAffiliationE-mail
XU Hongwei* Measurement center of Guizhou Power Grid Company 275853249@qq.com 
CONG Zhongxiao Measurement center of Guizhou Power Grid Company 644397824@qq.com 
YANG Xiaolu Measurement center of Guizhou Power Grid Company 727932362@qq.com 
ZHOU Zhongming Measurement center of Guizhou Power Grid Company 1094107881@qq.com 
CHEN Yinsheng Harbin university of science and technology chen_yinsheng@126.com 
LIN Haijun Harbin university of science and technology lhjhlg@126.com 
Hits: 1010
Download times: 276
中文摘要:
      为了解决小波神经网络初值敏感性及收敛稳定性问题,以提高计量终端软件可靠性预测建模的效率及准确性。文章完善了整体退火遗传算法(WAGA),并验证了其具有极强的整体收敛和全局优化能力,利用其全局寻优能力,优化小波神经网络(WNN)的参数,提出基于整体退火遗传小波神经网络(WAGA-WNN)的建模方法;用该方法建立计量终端的软件可靠性预测模型。实验结果表明,该方法可以解决小波神经网络初值敏感性及收敛稳定性难题,建立的软件可靠性预测模型效率和准确度较高。
英文摘要:
      In order to solve the problem of initial value sensitivity and convergence stability for the wavelet neural network and improve the efficiency and accuracy of the reliability predictive model for metering terminal software, the following steps are performed. The paper improves the whole annealing genetic algorithm (WAGA), and prove that it has extremely strong ability in global convergence and global optimization. Made use of its global optimization property to improve the parameters for wavelet neural network (WNN) and develop model-building method based on whole annealing genetic algorithm-wavelet neural network (WAGA-WNN). Build software reliability predictive model for metering terminal based on the proposed method. The experimental result indicates that this method can solve the problem of initial value sensitivity and convergence stability for wavelet neural network, furthermore, the software reliability predictive model has high efficiency and accuracy.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd