• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于分配因子和信息熵的母线负荷组合预测模型
Bus load combined forecasting model based on distribution factor and information entropy
Received:November 23, 2020  Revised:December 08, 2020
DOI:10.19753/j.issn1001-1390.2024.03.009
中文关键词: 母线负荷预测  分配因子  信息熵  组合预测  变权重
英文关键词: bus load forecasting, allocation factor, information entropy, combined forecasting, variable weight
基金项目:南方电网云南电网生产技术改进项目(056000GS62190026)
Author NameAffiliationE-mail
LI Xiufeng* Yunnan Electric Power Dispatching Control Center 457721974@qq.com 
JIA Yang Yunnan Electric Power Dispatching Control Center 457721974@qq.com 
GAO Daochun Yunnan Electric Power Dispatching Control Center 457721974@qq.com 
DUAN Ruiqin Yunnan Electric Power Dispatching Control Center 457721974@qq.com 
LIU Mei Beijing Qingruan Innovation Technology Co., Ltd. 457721974@qq.com 
YAN Pengfei North China Electric Power University 457721974@qq.com 
Hits: 632
Download times: 189
中文摘要:
      负荷预测是指导电力系统规划和安全经济运行的重要依据。传统的负荷预测一般指区域负荷总量的预测,不能够体现底层母线负荷水平,无法满足电网精益化管理的要求。因此,母线负荷预测是解决这一问题的关键途径。然而,系统内母线数量庞大,负荷基数小,特性各异,波动性强,给母线负荷预测工作带来了困难。研究了母线负荷预测模型,根据实际电网情况提出了负荷分配因子的概念及预测思路;充分考虑历史数据的有效性,采用日特征量和趋势相似度综合选择相似日,并提出基于信息熵的变权重组合预测方法,提高各类型负荷预测精度;结合类型负荷预测结果和负荷分配因子,最终得到各条母线的预测结果。采用某区域电网负荷进行实例验证,结果表明,文中所建立的预测模型具有良好的预测精度和稳定度。
英文摘要:
      Load forecasting is an important basis for guiding planning, safe and economic operations of power system. The traditional load forecasting generally refers to the prediction of the total regional load, which cannot reflect the underlying bus load level and cannot meet the requirements of grid lean management. Therefore, bus load forecasting is the key way to solve this problem. However, the number of bus in the system is large, the load base is small, the characteristics are different, and the volatility is strong, which brings difficulties to the bus load forecasting work. In this paper, the bus load forecasting model is studied. According to the actual grid situation, the concept and forecasting idea of load distribution factor are proposed. Considering the validity of historical data and selecting similar days by using daily feature quantity and trend similarity, a variable weight combination forecasting method based on information entropy is proposed to improve the prediction load accuracy of the whole system. Combined with the system load forecasting results and the load distribution factor, the predicted results of each bus are finally obtained. The example verification is carried out by using a certain regional grid load. The results show that the prediction model established in this paper has good prediction accuracy and stability.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd