• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于深度自编码器的数字化输电线路地形特征提取方法研究
Research of terrain discrimination method of digital transmission line based on deep autoencoder
Received:December 03, 2020  Revised:December 14, 2020
DOI:10.19753/j.issn1001-1390.2021.07.012
中文关键词: 数字化输电线路  地形特征提取  深度自编码器  逐层训练
英文关键词: Digital transmission line  terrain feature extraction  deep autoencoder  layer-by-layer training  
基金项目:国网公司科技项目(B3018F20000W)
Author NameAffiliationE-mail
Lu Shihua* State Grid Jibei Economic Research Institute, Beijing Jingyan electric power engineering design co. lsh19920415@163.com 
Sun Mi State Grid Jibei Economic Research Institute, Beijing Jingyan electric power engineering design co. lsh19920415@163.com 
Xie Jinghai State Grid Jibei Economic Research Institute, Beijing Jingyan electric power engineering design co. lsh19920415@163.com 
Guo Jia State Grid Jibei Economic Research Institute, Beijing Jingyan electric power engineering design co. lsh19920415@163.com 
Yuan Jingzhong State Grid Jibei Economic Research Institute, Beijing Jingyan electric power engineering design co. lsh19920415@163.com 
Su Dongyu State Grid Jibei Economic Research Institute, Beijing Jingyan electric power engineering design co. lsh19920415@163.com 
Hits: 1828
Download times: 378
中文摘要:
      :在输电线路的设计中,对输电线路的地形特征判别是实现输电线路成本估算以及安全设计的重要步骤。为解决对输电线路中的地形进行快速判别问题,研究了一种基于深度自编码器的数字化输电线路地形特征提取方法。首先基于数字化勘探技术建立复杂地理信息的数字化模型,再根据建立的数字模型使用深度自编码器进行特征提取。在深度自编码器的训练过程中,使用逐层训练法解决训练中的梯度消失和梯度爆炸问题,并在实际算例中,使用粒子群优化算法进行深度自编码器的超参数调节。实验结果表明,本文研究的方法可以将不同特征的地形进行快速的分类,其结果可以辅助设计人员进行输电线路的成本估算和安全设计。 关键词:数字化输电线路;地形特征提取;深度自编码器;逐层训练;
英文摘要:
      The identification of the topographic features of the transmission line is an important issue to realize the cost estimation and safety design of the transmission line. In order to solve the problem of rapid identification of terrain features in digital transmission lines applications, a deep autoencoder-based terrain feature extraction method is studied. First, a digital model of complex geographic information is established based on digital exploration technology, and then the algorithm structure of the deep autoencoder is established. The layer-by-layer training method is used to solve the problems of gradient disappearance and gradient explosion in the deep autoencoder. Moreover, in the actual example, the particle swarm optimization algorithm is used to adjust the hyperparameters of the deep autoencoder. Experimental results show that the proposed method can classify different landforms rapidly, and the results can assist designers in the cost estimation and safety design of transmission lines.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd