• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于Nakagami分布的风速概率分布拟合研究
Study on fitting of wind speed probability distribution based on Nakagami distribution
Received:December 07, 2020  Revised:December 22, 2020
DOI:10.19753/j.issn1001-1390.2024.02.011
中文关键词: 风速概率分布  Nakagami分布  威布尔分布  概率分布函数
英文关键词: wind speed probability distribution, Nakagami, Weibull distribution, probability distribution function
基金项目:国家自然科学基金资助项目(51907034);广西自然科学基金项目(2018JJB160056)
Author NameAffiliationE-mail
HUANG Wufeng School of Electrical Engineering,Guangxi University wufeng_Huang@163.com 
ZHENG Hanbo* School of Electrical Engineering,Guangxi University hanbozheng@163.com 
DU Qi School of Electrical Engineering,Guangxi University d_q1573149783@163.com 
YANG Hang School of Electrical Engineering,Guangxi University yanghang0596@163.com 
Hits: 630
Download times: 294
中文摘要:
      准确拟合风速概率分布对估算潜在风场所蕴含的风能具有重要作用。引入二参数Nakagami分布对美国西部涵盖沿海、海岛和内陆的八个站点风速数据进行拟合,并对比瑞丽分布、伽马分布、威布尔分布、对数正态分布、广义极值分布以及JohnsonSB分布,使用决定系数、均方根误差、误差平方和以及Kolmogorov-Smirnov四个拟合指标进行校验。与参数较少的瑞丽分布、伽马分布、对数正态分布以及威布尔分布精度进行比较,Nakagami分布在八个站点的四个拟合指标均值中取得最优的拟合精度。与三参数的广义极值分布以及四参数JohnsonSB分布进行拟合对比,Nakagami分布在四个站点获得最优精度。根据风速数据的统计结果,当站点的平均风速低于3 m/s时,Nakagami比其它分布获得了更高的拟合精度。综合考虑Nakagami简便的计算及较高的拟合精度,其在拟合风速概率分布领域更具优势。
英文摘要:
      The accurate fitting of wind speed probability distribution plays an important role in estimating the wind energy in potential wind farms.In this study, the two parameters Nakagami distribution is introduced to fit the wind speed data of eight stations covering coastal, island and inland in the western United States, and the Rayleigh, Gamma, Weibull, lognormal, generalized extreme value and Johnson SB distribution are compared by using coefficients of determination, root mean square error, sum of squares of errors and Kolmogorov-Smirnov, and compared with fewer parameters Rayleigh, Gamma distribution, lognormal and Weibull distributions, the goodness-of-fit of Nakagami obtained the optimal fitting precision among the mean values of four fitting indices at eight stations.Compared with three parameters generalized extreme value and four parameters Johnson SB distribution, Nakagami obtained the optimal accuracy at four stations. According to the statistical results of wind speed, it was found that when the average wind speed was lower than 3m/s, Nakagami obtained the highest fitting accuracy.Considering calculation and precision, Nakagami is more suitable for fitting wind speed probability distribution.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd