• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
10 kV电缆接头局部放电趋势分析及预警方法研究
Research on partial discharge trend analysis and early warning method of 10 kV cable connector
Received:December 08, 2020  Revised:December 26, 2020
DOI:10.19753/j.issn1001-1390.2024.02.010
中文关键词: 局部放电  暂态地电压(TEV)  长短期神经网络(LSTM)  Mann-Kendall检验法  趋势分析  预警
英文关键词: partial discharges, TEV, LSTM, Mann-Kendall test method, trend analysis, early warning
基金项目:国家自然科学基金资助项目(51807063);中央高校基本科研业务费专项资金资助(2019MS081);国家科技支撑计划项目(2015BAA06B03)
Author NameAffiliationE-mail
ZHAO Hongshan School of Electrical and Electronic Engineering,North China Electric Power University zhaohshcn@126.com 
MENG Hang* School of Electrical and Electronic Engineering,North China Electric Power University 2513128652@qq.com 
WANG Kui School of Electrical and Electronic Engineering,North China Electric Power University 714677224@qq.com 
ZHANG Zeyan School of Electrical and Electronic Engineering,North China Electric Power University 359888608@qq.com 
ZHANG Junhao School of Electrical and Electronic Engineering,North China Electric Power University 413513360@qq.com 
Hits: 635
Download times: 287
中文摘要:
      电缆接头是局部放电频发的位置,针对目前对局部放电趋势研究的不足和预警不及时的问题,提出了一种基于Mann-Kendall检验法和长短期神经网络(LSTM)的局部放电的趋势分析和预警方法。为了清晰地揭示局部放电数据的趋势特征,文中采用Mann-Kendall检验法对采集的暂态地电压(TEV)数据进行处理,定量计算趋势变化及突变点检测。文中提出基于Mann-Kendall检验法和LSTM算法的综合预警模型,该模型利用LSTM预测TEV序列幅值,并用Mann-Kendall计算预测值的趋势参数,通过综合考虑TEV幅值大小和趋势参数实现了电缆接头局部放电主动预警。算例结果表明,Mann-Kendall能清晰揭示局部放电变化趋势,LSTM对局部放电数据预测效果良好,基于二者构建的预警模型能较好地对局部放电进行预警。
英文摘要:
      Cable joints are the location where partial discharges frequently occur. Aiming at the current insufficiency of partial discharge trend research and untimely early warning problems, a trend analysis and early warning method of partial discharge based on Mann-Kendall test method and long short-term memory (LSTM) neural network is proposed in this paper. Firstly, in order to clearly reveal the trend characteristics of the partial discharge volume, the Mann-Kendall test method is used to process the collected transient earth voltage (TEV) data, and quantitatively calculate the trend change and mutation point detection. Secondly, this paper proposes a comprehensive early warning model based on Mann-Kendall test method and LSTM algorithm. The model utilizes LSTM to predict TEV sequence amplitude, and Mann-Kendall is used to calculate trend parameters of predicted values, and the active early warning of partial discharge in cable joints is achieved through comprehensively considering TEV amplitude and trend parameters. The example results show that Mann-Kendall can clearly reveal the development trend of partial discharge, and the prediction effect of partial discharge data based on LSTM is good. The early warning model based on the two can better warn the partial discharge.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd