• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
电力市场环境下基于深度强化学习的微网能量管理系统实时自动控制算法
Real-time automatic control algorithm of microgrid energy management system based on deep reinforcement learning in electricity market environment
Received:December 25, 2020  Revised:February 02, 2021
DOI:10.19753/j.issn1001-1390.2021.09.012
中文关键词: 微网  深度强化学习  电力市场  可再生能源
英文关键词: microgrid  deep reinforcement learning  electricity market  renewable energy
基金项目:国家电网公司科技资助项目(SGTYHT/15-JS-191)
Author NameAffiliationE-mail
Guo Guodong* North China Electric Power University gbjdsf@163.com 
Gong Yanfeng North China Electric Power University yanfeng.gong@ncepu.edu.cn 
Hits: 1442
Download times: 431
中文摘要:
      作为多类分布式能源的集成者,微网在促进清洁低碳能源发展方面有巨大潜力。然而,可再生能源出力的不确定性给微网的管理带来了挑战,同时也将这种不确定因素带给外部电网。本文基于实时市场,构建了一个包含新能源机组、传统机组和需求响应资源的微网环境,并采用了能够利用环境信息的深度确定性策略梯度算法,这种无模型(model-free)的强化学习算法有助于充分利用累积的数据信息,能够更好地适应不确定环境,在连续的状态空间和动作空间中进行学习提升。仿真结果表明,本文所提算法能够有效应对微网中的不确定因素,降低微网运行成本。
英文摘要:
      As an integrator of distributed energy, microgrid has great potential in promoting the development of clean and low-carbon energy. However, the uncertainty of renewable energy output brings challenges to the management of microgrid, and also brings this uncertainty to the external grid. Based on the real-time market, this paper constructs a microgrid environment including new energy units, traditional units and demand response resources, and adopts a deep deterministic strategy gradient algorithm which can utilize the environmental information. This model free reinforcement learning algorithm helps to make full use of the accumulated data information, and can better adapt to the uncertain environment and improve in the continuous state space and action space. Simulation results show that the proposed algorithm can reduce the operating cost of microgrid while dealing with the uncertain factors effectively.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd