• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于高斯混合模型的光伏发电出力中高比例异常数据检测方法研究
Research of High Proportion of Outliers Detection in Photovoltaic Power Data based on Gaussian Mixture Model
Received:January 04, 2021  Revised:January 04, 2021
DOI:10.19753/j.issn1001-1390.2021.09.003
中文关键词: 光伏发电出力  故障异常数据  高斯混合模型  EM算法
英文关键词: Photovoltaic power  high proportion of outliers  Gaussian mixture model  EM algorithm
基金项目:国网公司科技项目(52010119000R)
Author NameAffiliationE-mail
Liu Yan* State Grid Jibei Marketing Service Center (Metrology Center) liuy19890729@163.com 
Li Wenwen State Grid Jibei Marketing Service Center (Metrology Center) liuy19890729@163.com 
Zhou Lixi State Grid Jibei Marketing Service Center (Metrology Center) liuy19890729@163.com 
Wei Tongjia State Grid Jibei Marketing Service Center (Metrology Center) liuy19890729@163.com 
Zhou Xinnan State Grid Jibei Electric Power Company Limited liuy19890729@163.com 
Yang Lei Qinhuangdao power supply company in Jibei provincial electric power company liuy19890729@163.com 
Hits: 2279
Download times: 481
中文摘要:
      光伏发电出力中的高比例异常数据具有相互重叠、多高斯分布的特点,如何精确的剔除光伏发电出力中的高比例异常数据是实现光伏功率精确预测的关键问题。本文分析了光伏发电出力中高比例异常数据的特点,并研究了一种基于高斯混合模型的光伏发电出力高比例异常数据检测方法,首先建立了高斯混合模型的算法模型,再使用期望极大算法(Expectation Maximization,EM)算法对高斯混合模型的参数进行估计,最后使用算法模型对光伏发电出力中的高比例异常数据进行检测和剔除。实际算例分析和对比实验表明,本文的方法可以对多分类的高比例异常数据进行精确的检测,较传统的异常数据检测方法更加适用于光伏发电出力的高比例异常数据检测。
英文摘要:
      The high proportion of outliers in photovoltaic power data has the characteristics of mutual overlap and multi-Gaussian distribution. How to accurately eliminate the high proportion of outliers from photovoltaic power data is a crucial problem for realizing precise photovoltaic power forecast. This paper analyzes the characteristics of high proportion of outliers in photovoltaic power data, and studies a high proportion of outlier detection method in photovoltaic power data based on Gaussian mixture model. Firstly, the algorithm model of Gaussian mixture model is established, and then the EM algorithm is used to estimate parameters of the Gaussian mixture model. At last, the proposed algorithm is used to detect and eliminate the high proportion of outliers in the photovoltaic power data. Experiments and comparative studies show that the proposed method is more suitable for high proportion of outlier detection in photovoltaic power than the classical outlier data detection method.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd