• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于改进粒子群算法的电流互感器J-A模型参数辨识
Parameter identification for J-A hysteresis model of current transformer based on improved particle swarm optimization algorithm
Received:January 05, 2021  Revised:March 26, 2021
DOI:10.19753/j.issn1001-1390.2021.05.010
中文关键词: Jiles-Atherton磁滞模型  改进粒子群算法  参数辨识  磁滞回线
英文关键词: Jiles-Atherton hysteresis model, improved particle swarm optimization algorithm, parameter identification, hysteresis loop
基金项目:基于实功率仿真的计量用互感器运行质量评价模型研究
Author NameAffiliationE-mail
Cao Yi State Grid Shanghai Electric Power Research Institute, Shanghai 200052, China lsf9863@outlook.com 
Wang Lu State Grid East China Branch, Shanghai 200120, China Wang_lu@ec.sgcc.com.cn 
Lei Min China Electric Power Research Institute Co., Ltd., Wuhan 430074, China fpf1379@163.com 
Chen Haibin State Grid Shanghai Electric Power Research Institute, Shanghai 200052, China 3034365919@qq.com 
Chen Xiwen* China Electric Power Research Institute Co., Ltd., Wuhan 430074, China hbf6842@sina.com 
Yu Lei State Grid Shanghai Electric Power Research Institute, Shanghai 200052, China 2920535266@qq.com 
Zeng Jianyou School of Art and Communication, China University of Geosciences, Wuhan 430074, China 22@qq.com 
Hits: 2352
Download times: 636
中文摘要:
      在应用Jiles-Atherton(J-A)磁滞模型对电流互感器的磁滞回线进行分析时,需对J-A磁滞模型中5个关键参数进行精确识辨。针对目前辨识方法存在的计算时间长和寻优能力差等问题,提出了一种改进的粒子群算法对J-A磁滞模型中的关键参数进行辨识。该算法将遗传选择策略引入到粒子群算法中,通过增加粒子群的多样性来提高了算法全局搜索能力,从而提高J-A磁滞模型关键参数辨识的准确度。文中对比分析了所提改进算法(GSS-PSO)与其他智能算法对J-A磁滞模型的关键参数辨识速度与准确度。结果表明,改进的算法得到的磁滞回线与实测磁滞回线的误差最小,且识别效率较高,证明了该算法在J-A磁滞模型参数辨识中的准确性和有效性。
英文摘要:
      It is necessary to accurately identify the five key parameters in the Jiles-Atherton (J-A) hysteresis model when it is applied to analyze the hysteresis loop of current transformer. An improved particle swarm optimization algorithm (PSO) is proposed to identify the key parameters in the J-A hysteresis model to solve the problems of computation time-consuming and poor optimization ability existing in the current identification methods. The genetic selection strategy is introduced into the PSO algorithm to improve the global search ability of the algorithm by increasing the diversity of the PSO, so as to improve the accuracy of key parameter identification of the J-A hysteresis model. In this paper, the identification speed and accuracy of the proposed improved algorithm (GSS-PSO) are compared with other intelligent algorithms in identifying the key parameters of J-A hysteresis model. The results show that the error between the hysteresis loops obtained by the improved algorithm and the measured hysteresis loops is the minimum, and the identification efficiency is high, which proves the accuracy and effectiveness of the proposed improved algorithm in the parameter identification of J-A hysteresis model.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd