• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于改进粒子群算法的电流互感器J-A模型参数辨识
The Identification Method of J-A Hysteresis Model ParameterBased on Improved Algorithm(gss-pso)
Received:January 05, 2021  Revised:March 26, 2021
DOI:10.19753/j.issn1001-1390.2021.05.010
中文关键词: Jiles-Atherton磁滞模型  改进粒子群算法  参数辨识  磁滞回线
英文关键词: Jiles-Atherton  hysteresis model, improved  particle swarm  optimization algorithm, parameter  identification, hysteresis  loop
基金项目:基于实功率仿真的计量用互感器运行质量评价模型研究
Author NameAffiliationE-mail
caoyi State Grid Shanghai Electric Power Company Electric power Science Research Institute lsf9863@outlook.com 
WangLu East China Grid Corporation Wang_lu@ec.sgcc.com.cn 
leimin China Electric Power Research Institute Co. LTD fpf1379@163.com 
chenhaibin State Grid Shanghai Electric Power Company Electric power Science Research Institute 3034365919@qq.com 
chenxiwen* China Electric Power Research Institute Co. LTD hbf6842@sina.com 
yulei State Grid Shanghai Electric Power Company Electric power Science Research Institute 2920535266@qq.com 
1 1 22@qq.com 
Hits: 1920
Download times: 542
中文摘要:
      在应用Jiles-Atherton(J-A)磁滞模型对电流互感器的磁滞回线进行分析时,需对J-A磁滞模型中5个关键参数进行精确识辨。针对目前辨识方法存在的计算时间长和寻优能力差等问题,提出了一种改进的粒子群算法对J-A磁滞模型中的关键参数进行辨识。该算法将遗传选择策略引入到粒子群算法中,通过增加粒子群的多样性来提高了算法全局搜索能力,从而提高J-A磁滞模型关键参数辨识的准确度。本文对比分析了所提改进算法(GSS-PSO)与其他智能算法对J-A磁滞模型的关键参数辨识速度与准确度。结果表明,本文的改进算法得到的磁滞回线与实测磁滞回线的误差最小,且识别效率较高,证明了该算法在J-A磁滞模型参数辨识中的准确性和有效性。
英文摘要:
      When the Jiles-Atherton (J-A) hysteresis model is applied to analyze the hysteresis loop of current transformer, it is necessary to accurately identify the five key parameters in the J-A hysteresis model. Since the existing identification methods have the problems of long calculation time and poor optimization ability, an improved particle swarm optimization algorithm is proposed to identify the key parameters of J-A hysteresis model. With the genetic selection strategy is introduced into the particle swarm optimization (PSO) algorithm, the global search ability of the algorithm is improved by increasing the diversity of the particle swarm optimization, so as to improve the accuracy of the identification of the key parameters of J-A hysteresis model. In this paper, the calculation speed and accuracy of the proposed improved algorithm (gss-pso) are compared with other intelligent algorithms in identifying the key parameters of J-A hysteresis model. The results show that the error of the hysteresis loop calculated by the improved algorithm is the least, and the identification efficiency is higher, which proves the accuracy and effectiveness of the algorithm in parameter identification of J-A hysteresis model.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd